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Abstract

Lake Hoare (77 =38' S, 162" 53' E) is a perennially ice-covered lake at the eastern end of Taylor Valley
in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick

ice cover (3-5 m) which eliminates wind generated currents, restricts gas exchange and sediment

deposition, and reduces light penetration. The ice cover is in turn largely controlled by the extreme

_c,n_onality of Antarctica and local climate. Lake Hoare and other dry. vai1,,S lakes may be sensitive

:::dicatorz of" scon term (< 100 yr) climatic and/or anthropogenic cha_w"- ;., the dry. valleys since the
t

onset of h,te:_sive exploration over 30 years ago. The time censtants for turnover of the water column

and lake ice are 50 and 10 :ears, respectively. The turnover time for atmost:nerk" gases in tl',e ]'-.&eis 30-60

ye_-:. The: ':fore, the lake environment responds to changes on a I0-100 year timescale. '3ecause the ice

cover has a controlling influence on the lake (e.g. light penetration, ga¢ content of water, and sediment

deposition), it is probable that small changes in ice ablation, sediment loading on the ice cover, or glacial

meltwater (or groundwater) inflow will affect ice cover dynamics and will have a major impact on the
lake environment and biota.

Introduction

The largest relatively glacier-free region on the
Antarctic continent is the southern Victoria Land

'dry valleys' ( ~ 4 000.l<.m:) near McMurdo Sound

(H@wood, 1972). =l'he dry valleys, which have
also been called the southern Victoria Land

'oasis' (Parker etal., 1982a) or 'Ross desert'

(Friedmann & Weed, 1987), exhibit glacial and

periglacial features, temperatures usually below

freezing, low precipitation, cyclonic storms, high

velocity winds, and four months each of con-

tinuous sunlight, twilight, and darkness (Solopov,

1967). The southern Victoria Land dry valleys

contain several closed basins in which perennially
ice-covered lakes are found. The ice covers on

these lakes overlie liquid water which contains

plankton and benthic microbial communities.
The lakes of southern Victoria Land were first

discovered during the Expeditions of R. F. Scott
during the early 1900's (Scott, 1905; Huxley,"

1913). For half a century after their discovery, the

limnology, geology, geomorphology, and climate

of the southern Victoria Land dry valleys and
lakes remained unknown (Parker et al., 1982a). It

was not until the International Geophysical Year
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(I 957-58) and the establishment of United States
and New Zealand scientific research bases on

Ross Island that studies in the dry valleys were
resumed.

From the late 1950's until 1978, limnological

data from these lakes were limited to samples and

measurements taken through 10-23 cm drill holes

in the ice. These studies focused primarily on the
characterization of the water column and have

been reviewed by Heywood (1984), Hobbie

(198_), and Vincent & Howard-Williams (1985).

Beginning in 1978, we developed a method for

melting holes through the 3-5 m thick perennial

ice covers for the purpose of allowing research
divers to work under the ice (Simmons et aL,
1979; Love et aL, 1982). This development and

the data generated by these activities opened a

new dimension to lirtmotogical studies of the dry

valley lakes.

Some of the more important results of this

research have led to a better understanding of gas

exchange mechanisms between the atmosl_laere,

ice, and water column (Wharton eta',., 1986,

1987), the toxicity effects of high oxygen concen-

trations (Miketl et al., 1984), the biological adap-

tations to low levels of light (Palmisano &

Simmons, 1987) and temperature (Seaburg et al.,

1982), the relationship between sediment accumu-

lation on the ice cover and resulting ice cover

dynamics (McKay etal., 1985; Nedell etal.,
1987b; Simmons etal., 1986), and the species

composition, distribution, morphology, and ecol-

ogy of benthic microbial mats (Allautt etal.,
1981; Love etal., 1983; Parker etal., 1981,

1982b; Simmons etal., 1983; Wharton etal.,

1982, 1983).

The majority of the studies listed above lead to

an important conc--'-lusion;namely, environment in
a dry valley lake is to a large extent controlled by

the presence of a relatively thick perennial ice
cover. The ice cover eliminates wind generated

currents within a lake (Ragotzkie & Likens, 1964;

Hawes, 1983b) and greatly restricts exchange of

gases between the water column and atmosphere

(Wharton et al., 1986, 1987). The ice cover also

greatly reduces light penetration (Palmisano &
Simmons, 1987) and restricts sediment deposi-

tion (Simmons er aL, 1986; Nedell et aL, 1987b)
into the water column below.

The ice cover is in turn largely controlled by the

extreme seasonality of Antarctica and local cLi-

mate. Therefore. it is [_ossible that the perennially
ice-covered lakes coul_t represent a sensitive indi-

cator of short term (< 100yr) climatic and/or

anthropogenic changes in the dry. valleys resulting

from intensive exploration over the past 30 years.

As shown in a subsequent section, the time con-
stants for turnover of the water column and lake

ice are --, 50 and --, 10 years, respectively. The

turnover time for atmospheric gases in the lake is

30-60 years (Wharton et aL, 1987). Thus, the lake

environment responds to changes on a 10-I00

year timescale. Because the ice cover has a con-

trolling influence on the lake (e.g. light pene-

tration, gas content of water, and sediment depo-

sition, etc.), it is probable that small changes in

ablation, sediment loading, and glacial meltwater

(or ground water) inflow will affect ice cover dy-
namics and will have a major impact on the lake
environment and biota.

In this paper, we synthesize our recent resear_:h
f'mdings for Lake Hoare, Taylor Valley, Antarc-

tica. Specifically, we will discuss the climate of

Taylor Valley, the physics of Lake Hoare's ice

cover, and the gas balance within the lake. We will
also consider the effects of the ice cover on the

water column and benthic environments, as well

as sediment deposition. We will conclude with a
discussion of future research objectives, which we

believe necessary to complete our understanding

of the lake environment and its potential as an

indicator of short term climatic and/or anthropo-

genic changes in the dry valley region.

Study site

Lake Hoare (77*38' S, 162"53'E) is at the

eastern end of Taylor Valley in southern Victoria
Land, Antarctica. The lake is 58 m above sea

level, 4.1 km long, 1.0 km wide, with a surface of
1.8 kin:, a maximum depth of 34 m. and a mean

depth of 14.2 m (Fig. 1). The perennial ice cover

of Lake Hoare overlies water at a temperature of
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Fig. L Map of Lake Hoare, Taylor Va/ley southern Victoria
[and Ancarc_ca. DH, GH, R/-I indicate locauon of research

dive holes. Depth contours are in meters.

0 ° C. The lake receives both water and sediment

from glacial meltstreams and from nearby Lake

Chad during the austral summer; lacking outflow

streams, it loses water only by ablation and subli-

mation at the surface of the ice and by evapo-
ration from the moat.

Results and discussion

Taylor Valley climate

The climate of the dry valleys is strongly seasonal
as a result of the southern latitude. There is ~ 4

months of sunlight in summer and 4 months dur-

ing which the sun does not cross above the hori-

zon. The light, temperature and wind regimes

follow this basic polar cycle (Clow et aL, in press).

In order to develop a in-depth understanding of

any ecosystem it is necessary to have year-round
data as to the climatic conditions. To achieve this

objective without the cost or environmental

impact of an over-winto_pteam we have deployed

automatic sensing and recording systems at Lake
Hoare. A meteorological station was deployed in

December 1985 and is situated on a small penin-

sular kame in the northeastern (down valley) end
of Lake Hoare (about 100 m up valley from the
Canada Glacier meltstream). The station consists

of a cup anemometer, wind direction indicator,

relative humidity measurement device, and a

t,_" .
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shielded T-type thermocouple with a electronic
reference thermistor. Identical wind and tempera-

ture instruments were placed at two elevations, I

and 3 m above ground level. A Li-Cor PAR

quantum sensor, which measures photosynthed-

caJly active radiation (PAR, _00-700 am), was
attached to the surface of a"f/at rock approxi-

mately 10 cm above the ground, near the station.

The data acquisition and storage system is based

on a Campbell Scientific Data Recorder.

Two environmental variables of prime interest

in understanding the ecology of Lake Hoare are

temperature and light. These variables also are

characterized by unique cycles associated with

the polar regions. For these reasons, we focus on

these variables in this paper, while a more com-

plete description of the meteorology and instru-
mentation is in CIow et aL (in press).

Figure 2 shows the six-hour averages of tem-

perature at 3 m height above the ground surface.

Minimum temperatures during the austral winter

were slightly less than - 40 ° C. However, during

the winter foehn winds the temperature rises

shut'ply often to as high as -I0 *C. Summer

temperatures were often above freezing and in

mid January 1987 there were days in which the

temperature never fell below freezing. The mean

annual temperature for 1986 was -17.3 °C,

which is very. close to the value reported for Lake
Vanda of-20.0 :C (Thompson etaL, 1971).

Figure 3 shows the six-hour averages of the

PAR incident on the lake surface. A diurnal cycle,

even on a clear day, is evident in the summer. This
is due to the ~ 26* difference between the zenith

angle of the sun at noon and at midnight. As can

be seen by comparing Figs. 2 and 3, the air tem-

perature closely follows the incident sunlight. The

summer climate is dominated by the presence of

sunlight (Clow et al., in press). This is true both
on the scale of seasonal variations and on day by
day variations in the summer. Hence, the warmest

day of the year will typically be in late December

or early January, close to the summer solstice.

This is quite unlike lower latitudes in which there

is a much longer delay between the summer light

maximum and the warmest temperatures. During
the summer, days with cloud cover are associated
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._g, 2. Temperature at 3 meter height using shielded (against duect sunlight) T-type thermocouple with an electronic reference

temperature (thermistor). Each data represents the average of data points taken every 30 seconds over six hour interv_s. The
data from zhe mezeoro]o_ station is plotted versus the day of the ye_; zero on the x-a_ds corresponds to .Tan. 1, 1986. The data

forDec. 1985 are plottedaswell.A more detaileddiscussionof theseresultsisin¢Dc_w eraL (inpress).Errorsare about _+0.5 *C

The 1986 year[yaverage value is - 17,3°C.

o

340 35 85 95 125 155 185 215 245 275 305 335 365 25
1985 1986 _1987

DAY OF THE YEAR

Fig. J. Photosynthetic quantum flux at Lake Hoare (meteorology station) obtained with a Li-Cor PAR quantum sensor _nsitive

to l;ght between 400-700 nm. The yearly average PAR is 188 WE m - 2 s - s with a maximum error or"4.6%. The x-axis is as
defined in Fig. 2.

.,
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with significant drops in temperature, as can be
seen in Fig. 2 for the interval between days 358

and 361 of 1985 (corresponding to 25-28 Dec.

1985).The totalamount of photosynthetically

activesunlightincidenton thelakecan be deter-

mined by inte_-ating the curve in Figure 3 which

gives 5.93x 109 pE m =a. This corresponds to a

yearly average PAR of 188]_Em-as =*. The

maximum error on this value based upon the tem-

perature sensitivity of the photodiode (0.15 % per

degree from 25 °C) is4.6_,_.

Figure 4 shows the cumulative PAR as a

functionoftime ofyear beginningon the f'trstof

September. To compile thisfigure,the data in

Fig.3 were continuedby assuming thatthelatter

portionofJanuary and allofFebruary and March

1987 were identicaltothe correspondingmonths
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I

0 10 20 I 10 20 I 10 20 I 10 20 I 10 20 I I020 I

SEPT OCT NOV DEC JAN FEE,
DATE

Fig.4.Cumulativesunlightas a fi.mctionoftimeofyear
beginningon the first dayofsunrise.Thisisthefractionof
thetotalsummersunlightthathasreachedthegroundbythe
datespecifiedonthex-axis.To compilethisfigure,thedata
inFig.3forthesummerseason1986-1987werecontinued
by assumingthatthelatterportionofJanuaryand allof
Februaryan__March 1987were identicalto thecorre-

spondingmonthsin1986.

in 1986. As can be seen in the figure only a smail

percentage of the total fight (--5%) is incident
before the start of typical field operations ha mid
October.

Physics of the ice cover

The dry.valleylakesare perenniallyice-covered

becausethe mean annualtemperaturesareso lo_

(- 20 -"C). The presenceof Uquid water beneath

the iceisprimarilydue to the factthatfora few

days inthesummer theairtemperaturesareabove

freezing.Consequendy, the presence of a year-

round ice-water interface in a lake, unique to

Antarctica, is due to this combination of very cold

mean temperatures and comparatively warm

summer maximums. A smaller seasonal tempera-
ture distribution would result in a lake that is

either frozen completely or one that melts fully in
the summer.

McKay et al. (1985) have developed a simple
model which relates the thickness of ice on a

perennially ice=covered lake to clirnatologic_

variables. In this annually averaged, steady state

mo.Jel, the thickness of ice is determined primarily

by the balance between the conduction of enerT.

from the ice and the inputs of energy via sunligk-

and the transport of latent and sensible heat by
the summer meltstream. The latent heat released

upon freezing at the ice-water interface is the

largest term in this equation. Because steady state

conditionsareassumed, thefreezingrateofware:

at the ice bottom must be offset by ablation fro_

the ice surface. Through this indirect reladonshi 7

ablation is the key variable that predicts the ic:

thickness. Other factors constant, higher ablatic:

rates correspond to thinner steady state ice cove
thicknesses. The ice thickness is given by (McKa:

et al., 1985):

Z
b In(TJT,)+ c(T,- To)- So(1- a)(I- ,')h(!- e-_'_)

v#+ Q

where To is the temperature of the ice-water inte
face, T, is the yearly averaged temperature of tl
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surface, both in Kelvin, Z is the equilibrium thick-
ness of the ice cover, v is the rate of formation of

new ice averaged over the entire year (equal to the

abiadon rate), p is the density of the ice, I is the
heat of fusion of water, a is the albedo ofthe lake,

r is the fraction of the lake that is covered by dark

absorbing material such as sand and silt, So is the

annual average solar radiation incident on the

lake surface, h is the mean e-folding extinction

path length multiplied by the cosine of the mean

solar zenith angle, t) and c are constants that

define the thermal conductivity of the ice,
k=b/T-c, taken to be 780Wm-I and

0.615 W m- t K- t respectively and Fs is the geo-
thermal heat flux.

We can use the difference in climate between

Wright and Taylor Va_eys to calculate the dif-

ference in steady state ice cover thickness on Lake
Vanda and Lake Hoare. The mean annual tem-

perature for 1969-70 at Lake Vanda (Wright

Valley) was -20.0 °C (Thompson etal., 1971),
whiie that for Lake Hoare over 1986 was

- 17.3 ° C. There is also a significant dLtTerence in

the yearly average light reaching the surface. A

v,:.tue of 104 W m - "- has been reported for Lake

Vanda (Thompson et al., i9"/I). A value for Lake

Hoare can be determined by converting the

average PAR (188_Em-2s -_) into total ra-

diation (CIow et oI. in press), which gives a value

of 92Win =2, Using Eq. (I) and the nominal

values of all parameters other than light (the
nominal values are those from curve '1' from

Fig. 2 of McKay et al., 1985, with a 30 cm/yr

ablation), we have computed that the ice thick-

ness corresponding to 104 W m- 2 is 3.36 m, and
the ice thickness corresponding to 92 W m = 2 is

4.43 m. Hence,_e can predict that the ice cover
on Lake Hoare would be about a metre thicker

than the ice cover on Lake Vanda.

The model ofMcKay et aL (1985) assumes that

the ice cover is in steady state, however, there is
evidence that the thickness of the ice on Lake

Hoare has undergone a significant change over

the last ten yeaxs. Fig. 5 shows the thickness of

the ice on Lake Hoare as detenTdned by drill and

melt holes over the past ten years. The 1980-81

point labeled with a solid circle and a set of" error

bars represents the results of an extensive survey
of the ice cover d_at season. Thirty-five holes were

driiled along the length and breath ofthe lake. The

average, with standar.d deviation, of the ice-
thickness values obta_ed is 4.77 _+0.3,$ metres,

N = 35. It is also significant that 885C, of the
values were, within one standard deviation of the

mean and no values were more than two standard

deviations from the mean. The distribution is

significantly tighter than a gaussian. These statis-

tics imply that the ice cover is very uniform

throughout the lake and that single measurements

can be used with a fair degree of confidence. In

general, any single measurement wiil be within
+_0.34 m of the mean [c¢ thickness. The error
associated with the mean of three measurements

will be significantly less. For these reasons, we
conclude that the trend show_ ia Fig. 5, a de-
crease of ice thickness on Lake Hoare, is not a

measurement error but represents a pronounced,

and as yet unexplained, chaage in the lake.

The d_a show a clear v'end; the ice thinned at

a roughly uniform rate of about 28 cm/yr from
1977 to 1986. This value is comparable to the

ablation rates repon:d for Lake Fryxell

(30 cm/yr, Henderson et al., 1965) and predicted
for Lake Hoare from meteorological data

(35 cm/yr) by Clow et al. (in press). This indicates

s
z

-7
4

I ! t I i [ I !
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Ffg. 5. Measured values of ice thickness on Lake Hoa,re,

Taylor Valley. Antarctica over the las_ ten years as a function
of the date. The data point ploued on 20 Jan 1981 represents

the mean of 35 data points. The range indicated is ± one

standard deviation. The linear fit to the data from 19"/'/-1986

has a slope of - 28,3 cm_year.
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that there has been either a change in the

local climate in Taylor Valley (e.g. mean annual

temperature) or a change in the physical proper-

ties of the ice cover on Lake Hoare (e.g. sediment

loading). To model these changes in the ice cover

requires extending the results of McKay et al.

(1985) to include time dependent effects such as

seasonal changes in sunlight and ablation.

One of the sima_cant biological implications of

the ice cover is on the quantity and spectral dis-

tribution of radiation reaching the liquid phase
beneath the cover. The reduction in light trans-

mission due to the thick ice cover also affects the

heat budget (Hoare, 1966; Ragotzkie & Likens,

1964; Bydder & Holdsworth, 1977; Adams &

Lasenby, 1978); primary, production, and plank-
ton distribution aad composition (Rodhe, 1956;

Tominaga, 1977; R.igler, 1978; Priddle, 1980;
Light etaI., 1981; Vincent, 1981; Vincent &

Vincent, 1982; Cathey et al., 1982; Parker et al.,

1982a; Hawes, 1983a, b, 1985). From an ecologi-

cal perspective, this reduction in the quantity mad

alteration of the spectral distribution of light will

exert selective pressures on the photoautotrophs

(Seaburg et al., 1983 ; Priscu et al., 1987).
Palmisano & Simmons (1987) recently dis-

cussed the spectral downwelling PAR irradiance

(400-700 rim) in Lake Hoare. For measurements
taken near noon at summer solstice, the full wave-

band PAP, beneath the ice was <44 _tE m-2s -

or _<3 _ of surface downweUing irradianee. The

ice cover absorbed longer wavelengths and maxi-

mum light transmission was in the blue region
between 400-550nm. The bulk attenuation

coefficient of the water column ranged between

0.45 and 1.33 for five depths measured beneath

the ice at two divlr holes. Light attenuation by

phy_oplankton was greatest in the 400-550 tam

and 656-671 am regions. The spectral distribu-

tion of sunlight penetrating the lake ice depends

upon seasonal factors including solar zenith

angle, day length, cloud cover, and ice charac-
teristics.

Goldman et al. (1967) first reported data on the

seasonal variations in ice cover optical properties.
To further document these seasonal effects, we

have extended the transmission measurements of

311

Palmisano & Simmons (1987). In Fig. 6, we show

the ice cover transn:u'_sion from early in the season

(11 Nov. 1986), at summer solstice (23 Dec. 1982,

from Palmisano & Simmons, 1987), and late in

the season (I 1 Jan 1987)Xl"he ice cover thickness

was roughly comparable in the 1982 data to the

1986-87 data (see Fig. 5). The results show an

interesting pattern. Early in the season when the

ice is fairly clear, the transmission of blue light
gready exceeds that of red light. This is because

the transmission of blue light is dominated by

scattering, which is minimal in the clear ice. How-

ever, in the red, transmission is dominated by the

absorptive properties of ice which is fairly inde-

pendent of whether the ice is clear or not. As the

season progresses, the surface of the ice clouds
due to freeze-thaw processes on the surface, and

as a result, the scattering optical depth greatly

increases, attenuating the blue light (Fig. 6). This

scattering has little effect on the red light. The

resuk is that later ha the season the spectral

Z
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Fig.6. Light transmission through a 3.7m thick ice cover at
various times during the season. Uppermost curveis for early
in the season (It Nov. 1986), middle curve is at summer
solstice (23 Dec. 1982) from Palmisano & Simmons (1987)
and lower curve is for late the season (11 Jan. 1987).The ice
cover thickness was similar in the 1982data to the 1986-87

data (see Fig. 5).
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properties of the ice become more uniform with

wavelength.

Roulet & Adams (1984) found spatial hetero-

geneity of tight penetration in an ice-covered

Canadian lake. They emphasized that a single
point measurement could overestimate the quan-

tity of light by 7000_, compared to an integrated

areal measurement. During the 1986 austral sum-

mer, we measured the spatial heterogeneity of

light penetration over a I0 m diameter circle

immediately beneath the ice at DH,; (Fig. I) and

found the total quanta penetrating the ice sur-
face to range between I5-51_Em-2s =t

(5 = 28.5 ± 12.7, N = 6) and the percent ttans=
mission to range between 0.43-1.45

(5 = 0.81 ± 0.36, N = 6). The variation between

our highest and lowest reading was 58.8_ and

most of the readings (5) were _< ± 30/_E
m - -" s - _. This indicates that the lake is relatively

uniform with respect to optical properties, which
is in agreement with ice thickness measurements.

Commonly encountered conditions indicate

that light penetrade_ is ~ 15_ of surface Ln'a-

diance values. The phytoplankton and water
mass the_ combine to ao_orb much of the remain-

ing light, so that the quantity of" Light reaching the

bottom of the 1-a.keis ._ 1o,,.o.This aspect of light

penetration and attenuation is particularly inter-

esting given the abundance of benthic photoauto-

trophs that thrive on the lake's bottom (Wharton

et aL, 1983).

Gas balance in the lake

One of the most unusual features of these lakes is

the occurrence ofsupersaturated O: and N 2 in the

water column ra_ging from slightly over satu-
ration to over 400% for O, and 160 °' for N 2. To_ /O

quantitatively explain the high O2 Concentrations,

we developed a bulk O2 budget. There are two

primary net sources of 02: a physical source

resulting from gases carried into the lake by the
meltstreams and forced into the water column

when water freezes onto the bottom of the ice

cover, and a biological source resulting from

photosynthesis and from the burial of reduced
carbon in the lake sediments.

)
While it has been known for many years that

the dry valley lakes are supersaturated with O:,
quantitative budgets were not available. We have

recently developed quantitative models of both

oxygen and nitrogen in Lake Hoare (Wharton

et aL, 1986, 1987). In our model of gas flow into

and out of the lake, we considered both biological
and nonbiological sources and sinks. Our model

(Wharton etal., 1986) predicted, and direct

measurements have subsequently shown that

there is a supersaturation of N: in the lake water,

as well as oxygen. Dissolved N 2 levels of 145%

and 163°.; were determined from samples taken

just below the ice cover and at a depth of 12 m,

respectively (Wharton et aL, 1987).

The two principal atmospheric gases (N:, Oz)

are both influenced by the non-biological proc-
esses affecting the gas balance of the lake water

(such _s freezing of water and bubble formation).

Non-biological processes will act on N: and O2

equally, maintaining the N,.JO: ratio at that value

characteristic of water in equilibrium with tb.e

atmosphere (---1.8). However, biological proc-

esses (primarily photosynthesis and respJraEon)
will affect the O 2 concentrations to a much larger

extent than they will affect N 2, thus altering the

N2/O2 ratio (Wharton etaL, 1987). Therefere,

this ratio can be a useful 'signature' of biological

and non-biological gas production. In Lake
Hoare, this ratio was 1.20 at the ice/water inter-

face and 1.O5 at 12m; considerably different from

the ratio in equilibrium with air (~ 1.8). Based on
these results, we have determined that about half

of the net O: production in the lake is the result
of biological processes.

The approach discussed above by which .we

can infer net biological productivity was validated

by the independent publication of a study of the

open ocean by Craig & Hayward (1987), in which

ratios of supersaturated gases were used in a

similar way.
By considering the total reservoir of gas in _e

lake and the inflows and outflows of O,_ and N2,
we have estimated the residence time of these

gases in Lake Hoare. We obtain a value of --, 30

years for oxygen and -,-60 years for nitrogen

(Wharton et at., 1987). Thus, gases are cycled

relatively rapidly through the lake.

P



The importance of the gas concentrating

mechanisms found in perennially ice-covered

Antarctic lakes includes the development of lift-
off benthic mat in shallow waters, the natural

selection for organisms that can adapt to perch=

nial supersaturated oxygen levels (MikeLl et al.,

198,A), and the production of gas channels in the

ice, which may serve conduits for sediment to

penetrate the ice cover.

Lake biology

Because of the combination of snow cover, sedi-

ment and gas bubbles, Light transmission through

the ice cover is much less than would be expected

with an equivalent column of pure ice or water.

This reduction in light Limits the plankton density,

and the lack of internal currents that keep free

floaters suspended (e.g. Langmuit spirals) also

restricts the plankton population to mainly swim=

mmg forms (Parker etaI., 1982a). Over 200

Itcasurements of chlorophyLl a (Chl a) were made

• _-dng the 1985--$6 austral summer at four dE=
ferent locations (DH I, DH2, DH4, RHI) in Lake

H'_are (Fig. 1). Chl a was r_easured fluorometri-

cally uzing th_ ;echnique described in Parker et al.

(1982a). The _nte_'ated Chl a concentration for
the season was 16.92 mg m- :. However, if a

hypsographic curve is used to accommodate

changes in volume with depth, the value then

becomes 22.26 mg m - 2 at the lake surface. When

these data are compared against 5 integrated

prof'de measurements made during the 1979-80

season, the 1985-86 values decrease by 43.2%

(22.6 vs. 39.19). The reasons for the decrease

measured during the 1985-86 season may have

been due to the melting of ice which would have

diluted the concen.F_adons of Chl a in the upper
water column. Also, during the 1979-80 season

the first Chl a collections were made nearly three

weeks before we began the 1985-86 collections.
In fact, the highest Ch[a measurement of the

1979-80 season was obtained on the f'Lrstprofile
measurement. When the I985-86 data were

examined on a seasonal basis, they showed that

the maximum Chl a level was at 13 m piezometdc
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depth (maximum O, concentration was at 10 m).

The fate of the phytoplankton community dur-

ing the Antarctic winter remains to be determined.

The future of the phytoplank'ton community under

a dynamically changing ice cover is important to
our understanding of this lake ecosystem. If the
ice cover continues to thin and sand contir_ues to

"X

be dumped from the ice cover, we would expect
light transmission to increase, and therefore

ph_oplankton density, as measured by Cld a, to
also increase.

Microbial mats composed primarily of the

cyanobacteria, euka.ryotic algae, and heterotro-

phic bacteria occur abundandy throughout the
benthic region of Lake Hoare (Wharton er al.,

1983). These microbial mats are precipitating cal-

cite, iron, and sulfur, and trapping and binding

sediment forming alternating laminae of organic

and inorganic material. An unique feature of many

of these benthic mats is their development into

modern, cold water stromatolites (def'med by

Awramik et al., 1976 as organosedimentary struc-

tures produced by sediment trapping, binding,

and/or precipitation as a result of the growth and

metabolism of m_.rocrganism_) Wharton etaI.

(i 983) h _ve described microbial mats resulting in'

four types of modern Antarctic Stromatolites, in-

cluding lit't-off, pinnacle, aerobic ,'nd anaerobic

prostrate mats.

One interesting effect of the elevated gas levels
is on the formation of stromatolites. Beneath the

perennial ice in the shallower, more brightly lit
areas of the lake is a sizeable biomass of columnar

lift-off mat. In these mats, an excess of dissolved

gas (primarily N2 and On) accumulates as bubbles

causing the mats to lift off the substrate (Parker

et al., 1982b; Wharton et al., 1983). These piece s.
of mat often tear loose from the substrate and

float up to the underside of the ice, thus disturbing

the integrity, or prohibiting the development of a
laminated structure. Therefore the formation of

.

bubbles, which is controlled by the environment,

can directly influence mat morphology and strb-
matolite formation.

Wharton et al. (1976) have developed a formula

for relating O2 and N2 dissolved in the water

column to bubble formation with depth:
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: = 10.o[o..t(So - 1) ÷ 0.78(S, - I) + (2)

where .- is the maximum depth of bubble for-

mation, So is the .supersaturation of O: with

respect to equilibrium with the atmosphere. S. is

the corresponding number for N:, and p,. is the

vapor pressure of water. For example, in Lake

Hoare the high concentration of dissolved gases
in the water column results in bubble formation to

a depth of -.. 10 m. Below 10 m bubbles cannot
form in the water as a result of the increased

hydrostatic pressure. Consequently, we expect

bubble formation and mat li/t-off to disrupt mat

morphology at depths above I0 m, while at

depths below I0 m laminated, prostrate mats

would be expected. Indeed. the former and latter

cases are observed in situ ('Wharton er al., 1983).

Another interesting aspect of the elevated gas

levels in the water column is on the oxygen content

of the sediment. During the 1986-87 field austral

summer, oxygen profiles of the sediment were
obtained with a Diamond Electro-Tech dis-

solved-O: microprobe calibrated to micro'_mldcr
determinations of water from the sediment-water
interface. This method was used to determine the

oxygen level of sediment in ceres taken from dif-
ferent locations at the bottom of the lake. Con-

trary to what is typic.ally observed in lake sedi-
ment, sediment collected in 10 m water depth and

above remained oxic to a depth of 30 cm (maxi-

mum core depth). Sediment collected from 23 m

depth and below were anoxic several mm below
the sediment water interface. The sediment which

remained o_dc to 30 cm are overlaid with water

supersaturated with O: (and other gases) while

the anox.ic sediment is oveHaid by anoxic water or

water with saturated levels of O= similar to what

would be obset'_d in a temperate lake. These

results are another indication of the important

role that the supersaturation of atmospheric gases

play in regulating the lake environment.

Sediment�ice interactions and sedimentation

The physical environment for sedimentation in

Lake Hoare is unusual because of the presence of

the perennial ice cover. The ice catches and traps

wind blown sediment and provides a surface for

the movement (by saltation, rolling and drift on

the ice) of larger-_ediment partic!¢s into the

middle of the lake. Although the ice cover does

contain large boulders right in the middle of the

lake. most of the mass _f the ice cover burden is
in the form of sand-sized and finer par'deles.
Based on numerous melt holes we estimate that

the average sediment loading is ---0.2-2 gcm = z

This range of values corresponds to less than

0.6_0 of the mass of a 4 m ice cover.

The sediment in the ice will have a major

influence on the opdca.[ properties ofthe ice cover.

Sediment opacity causes heating of the ice cover,
which would tend to thin the ice. At the same

time, sediment opacity also prevents the trans-

mission of light through the ice, which would tend

to thicken the ice (McKay etal., 1985). Con-

sequendy, the amount of sediment in the ice cover

is an important variable in regulating ice thick-
heSS.

Small pa.rdcles of sediment will not melt the_

way directly through the ice cover (Simmons

et al.. 1986). This can be shown theoretically by

considering th-', energy balance of a radiadveiy

l'eated particle. A small, dark sand-dzed particle
t.n the surface of the ice or embedded in the ice

cover absorbs sunlight. If the heating rate is suf-

ficient to raise the surface temperature of the

panicle above the melting point, the particle will
sink into the ice cover. Because the particles are

very small compared to the thickness of the ice

cover, the particle surface temperature can be

determined by the spherically symmetric heat

equation:

F(t - oo)nr 2 = 4rtrkAT (3)

where F is the radiation field in the ice cover

averaged over the upward and downward direc-

tions (including scattered light), co is the sin.gle
scattering albedo of the panicle (co -,- 0.2), r is the

radius of the particle, k is the thermal conductivity
ofthe ice (at - 1 *C,k -,,2.3 W K -t m-t), and

AT is the difference between the temperature of

the panicle surface and the temperature of the ice
at the depth of the panicle. Using this equation,

II,
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Simmons eta]. (1986) have shown that in order to

melt through ice that is only I ° below freezing

requires a pardcIe of 1.5 cm radius at the surface,

3.8 cm at a depth of I m, and 9.3 cm at a depth

of 2 m. Malting through colder ice requires even
larger particles. Hence, sand-sized parucles that
have radii much less than I cm, will not melt

through the ice cover and are carried into the ice

cover by surface meltwater percolation during the

austral summer. Aggregates ofindividual particles
are effectively like a particle with a larger size and

are therefore able to more effectively melt the ice.

but only in approximately the first meter. From
this we conclude that sediment will not melt

through a several meter-thick ice cover and must

be ca.n'ied by water through cracks or gas-bubble
channels in the ice cover.

The results (Table I) from four sets of sediment

traps placed in the northeastern end of the lake

have helped us unravel the unusual sedimentation

processes (Simmons et al., 1986; Nedell et al., in

prep.). Traps from DH 1 (.-, 8 m depth) showed a
sedimentation rate of 4.11 mg cm - z yr- '. Sedi-

ment traps from DH2 (~ 11 m depth) and DH4

( -,-27 m depth) averaged 3.76 and

2.87 mg Cm - "=yr - ', respectively. It is interesting

that one trap (DH2 A and DH# C) from each of

these latter two sites contained signLficandy more
sand-sized sedimdnt than the other traps from the

same site. Traps from GHI (~23 m depth)

contained a substantial quandty of sediment and
had a mean se_iimentation rate of

142 mg cm - : yr- '. The sediment traps at GH I

were predominantly coarse s_d, while farther
away from the glacier at DH4, both coarse sand

and finer, silty material were collected. In DH 1

and DH2, which are closer to shore, the traps

collected silt and clay-sized particles. The
observation of' different amounts of sediment

from the same area supports the hypothesis that

sediment enters the lake through the ice cover at

distinct locations via cracks in the ice and/or gas
bubble channels. Also, small mounds of sand

0.5-1.0 m high and 1.0-3.0 m wide were observed

at the sediment/water surface near DH2 and

GH I, further suggesting point sources for sedi-
ment discharge into the lake through the ice cover

(Nedell et aL, in prep.). Therefore, ia_:ead of

Table l. Total dry ,,_ass and composifiol of sediment trap material collected from dive holes (DH) 1, 2, 4 and glacier dive hole

(GH) 1 in Lake Hoate, southern Victorian Land. Antarctica (modified from Simmons et al.. 1956).'

Total dr, ..'nas_ Organig matter Carbonate Gravel Sand Mud Other:"

(g) (g) (g) (g) (g) (g) (g)

DH I-A 17.52 0.81 6.61 0.00 0.25 9.85 0

DH I-B 24.38 0.63 13.79 0.00 0.43 9.53 0

DH l-C 16.95 1.10 6.04 0.00 0.34 9.47 0

DH 2-A 44.25 3.11 2.46 3.88 32.65 2.i5 0

DH 2-B 4.58 0.21 1.52 0.00 0.00 2.85 0

DH 2-C 4.98 0.48 1.41 0.64 0.i0 2.35 0

DH 4-A 2.58 0.I0 0.22 0.00 2.13 0,13 0

DH 4-B 2.08 0.13 0.18 0.00 1.67 0.10 0

DH 4-C 36.23- 0.32 0.89 2.58 32.39 0.17 0

GH I-A 633.00 39.69 18.38 0.00 572.42 1.51 1.00

GH I-B 544.00 4.30 15.30 0.00 522.74 2.24 0.02

GH I-C 856.20 7.53 30.74 0.00 813.97 2.94 1,02

' Traps were deployed in Dec/Jan 1982 and retrieved in Nov/Dec L985; methods for determining composition of trap material

in Simmons et aL (1986) and Nedell et al. (in prep). Traps were composed of an aluminium funnel with a 45 cm diameter

opening. 47 cm tall. attached to a plastic container 10 cm in diameter and 20 cm tall.
' Other = aluminium oxide material.

ORIG(:_AL PggE '=

OF POOR QUALITY
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receiving most of its sediment from the lake mar-

gin and inflowing streams, the majority of sedi-

ment at the bottom of Lake Hoare is transported

downward through the ice cover. The similarity in

gr_in-size distribution and mineralogy between

samples from the ic_ cover and lake bottom sup-

ports this conclusion (Simmons eral., 1986;.

NedetI et aL. 1987b). However, the f'me-grained

sediment population that appears in the lake
bottom samples but not in the samples from the

ice cover, is probably brought in via meltstreams.
This is corroborated by the observation of an

under ice plume of glacial flour 250-300 m from
the entrance of the Canada Glacier meltstream

into the lake.

It is not clear what controls the total sediment

burden on the ice cover. We suggest at least two

general possibilities. One possibility is that the

ice-sediment system is in steady state; the rate of

sediment percolation through the ice cover is
sufficient to balance the rate at which sediment is

added to the ice cover. In this case, the current

sediment burden is the steady state value axed

therefore its low amount suggests that there must

be a fairly efficient mechanism for getting sedi-

ment through the ice cover. A second possibility

is that the ice-sediment system is cyclic. Sediment

builds up on an initially clean ice cover until the

level of sediment causes a change in the ice cover

sufficient to dump the sediment. Clearly, an ex-
treme case would be when sufficient sediment is

loaded on the ice cover which then becomes nega-

tively buoyant. Simmons et al. (1986) have dis-

cussed a possible ice-sediment interaction cycle.

In their cycle,increased sediment loading results

in increased surface topography on the ice cover
and increased ablation, The increased ablation

results in a thinner ice cover until eventually a

point is reached at which the sediment, which

accumulates at t_e topographic lows (ponds), can
pass through the ice cover. The clean ice cover

reseals itself and the cycle begins anew. The

changes in ice cover thickness shown in Fig. 5
could be evidence that the ice-sediment system is

cycling and the ice cover of Lake Hoare just

underwent a transition as part of such a cycle

(Simmons et al., 1986).

Another important aspect of the benthic sedi-

me,at is their involvement with possible ground-
water influx. We have obtained the first actual

measurements of goundwater flow into a dry

valley lake. Seepage meters were placed in two

locations in the lake for a pilot study to measure

ground-water flow. One location was in approxi-
mately 8 m of water beneath the ice near the shore

by the meteorological station, and the other was

in approximately 27 m of water at the base of the

Canada glacier near GH1 (Fig. 1). The seepage
meters were constructed of polyvinyl chloride

(PVG) and 1 L Nalgene collection bags were used

for the collection of the seepage water (see

Simmons & Netherton, 1987). Seepage meter
water was collected from two areas in the lake

during the 1985-86 and 1986-87 austral sum-

mers over a six day period. During 1985-86,
,,- 625 ml m - : day = t was collected from the site

at the glacier's base, and --416 mlm-Zday -

from the shallow water site. Durkig the 1986-87
austral summer, ~ 31 mi m- = day- 1 was col-

lected at both sites also over a six day period. The

difference between years may be due to the time

period during which the samples were collected.

In 1985-86, we collected the samples in early

December; whereas, in 1986-87, the samples

were cuLlected in mid-January. The importance of

this pilot study is that earlier suggestions (Wilson,

1979; Chino, 1982) of groundwater movement :
into lakes have been corroborated and deserve

further study because groundwater seepage into
these lakes could play an important role in

nutrient cycling to the benthic community at the
sediment water interface.

lr

Conclusions

The environment of the Antarctic lakes could

represent a sensitive indicator of short term

(< I00 yr) climatic and human-induced changes

in the dry valleys. In fact, they may "be the only

sensitive indicator for changes on these times

scales. The other class of physical systems that
are in dynamic equilibrium with the climate are

the glaciers. Chinn (1985) has discussed this
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aspectof the structure and equilibrium of the dry.

valley glaciers and concludes that they respond on

many thousand year timescales. Some dry valley

glaciers are retreating and some are advancing
(Chinn. 1985). The other biological system in the

dry. vaJJeys is the c .ryptoe._dolithic microbial com-

munities described by Friedmann (1982). These

communities grow very slowly and again the time-

scale of response to changes is measured in

thousands of years (Friedmann & Weed, 1987).
The time constants in the lake are much shorter.

We can estimate the turnover time for the water

by dividing the mean depth of Lake Hoare

(14.2 m) by the i_'low rate (30 cm/yr, assumed to

equal the ablation rate). This gives a timescale of

---50 yr. A similar calculation for a 4 m ice cover

gives a timescale for lake ice turnover of -,, 13

years. We have determined the remover time for

atmospheric gases in the lake (O2 and N:) by

considering the total amount in the lake divided

by the sources. This gives a value of -,- 30 years for

O: and -,. 60 years for N: (Wharton et al., 1986,
1987). A time constant for biological turnover is

more difficult to estimate but i.- probably also

between I0 and I00 years.
We now think that the ice cover has a con-

trolling influence on the lake (e.g. light penetra-

tion, gas content of water, and scdimen: de-

position). Therefore. small ":.hanges in ablation,

sand loading, and glacial meltwater (or

groundwater) inflow will affect ice cover dynamics
and will have a major impact on the lake environ-

ment and the biota. These records of changes

should be most obvious in the sedimentary record.

For example, we know that sediment is deposited

through the ice cover, perhaps via cracks which

develop when the ice cover thins to ca. 3 m thick-
ness. This sediment buries portions of benthic

microbial mat, which will ultimately recolonise

the sediment surfaceea/'ter a period of years. The

resulting sediment lens in the benthic profile indi-

cates a period of sediment deposition through the

ice cover. Thinning of the ice cover (and resultant

sediment deposition) probably results from

changes in local climate which result in ice cover

changes. Consequendy, it may be feasible to

understand past climate regimes as well as to be

able to,predict the effect of future modifications of

climate (either natural or human-induced

changes) on the dry. valley lake ecosystem.
There is evidence of a recent change in clknafic

conditions :in the dry valleys. Chinn (1982) has

documented a water level rise in virtually all of the

dry valley lakes over the period of 1972 to 1982.

He suggests that this is rela_ed to climate but no
causal mechanism is proposed. Our data for ice

cover thickness on Lake Hoare also suggests

changes in the lake environment, and again we

have no causal mechanism to explain it. There is
not sufficient data to show whether ice cover

thicknesses have changed on the other lakes also.

If the dry valley lakes are to be useful as indi-

cators of climate change in that region of A,utarc-
tic:x, then it is necessary to develop the baseline

data that documents thepresentconditionofthe

lakes.Furthermore, detailedpredictivemodels

that relate thebiogeochemical cycles and biologi-

cal processesinthe laketo the externalenviron-

ment must be developed.

We feel the following future research objectives

axe necessary to complete our understanding of

the major physical, chemical, and biological inter-

actions that regulate the lake's ecology:

1. More refined models of the climatological con-
trois on the thickness of the ice cover.

2. A re-examination of phytoplankton density

changes in relation to changes in lake ice thick-
hess.

3. Development of a carbon cycle model, in

particular, quantification of the carbon dioxide

sources and sinks and their relationship to

carbonate formation particularly in benthic
microbial mats.

4. Quanr.ificafion of sediment loading on the ice =

cover and dumping.

5. Quantification of" benthic microbial biomass

accumulation and decomposition rates.
6. Resolution of abiofic/biotic contributions to

sediment composition.

7. A sediment profile study of oxygen and oxida-

tion-reduction potentials.

8. Quantification of ground water nutrient and

mineral re-cycling processes.
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In addition to helping us unravel the climatic and

environmental history of the dry valley region, the
ice-covered lakes serve as useful models for in-

creasing our understanding of early li[e on this

planet and possibly Mars. The first 2..5 billion

years of liYe on Earth was microbial. These
microbes left behind a fossil record of their Pre-
cambrian existence in the form of stromatoliteS. It

is a common misconception that stromatolites

form only in warm and/or saline environments. As

discussed pre'Aousiy, microbial mats are forming

stromatolites in the Antarctic dry valley lakes.

Other studies have shown that several periods of

glaciation occurred during the Precambrian
(Anderson, 1983; Walter & Bauld, 1983). We

suggest that studies of Antarctic lakes may play

an important role in the re-interpretation of

stromatolite formation during the Precambrian

and spec_calJy to theh" occurrence in Pre-

cambrian polarenvironments.

Another intriguingaspectofresearchinthedry

valleylakesisthe connection to extraterrestrial

habitats. The Aatarcdc dry valley lakes have been

suggested as analogs ofpaleolakes on Mars which

may bare sheltered early Martian life. Geological

a.ud climatological studies suggest that conditions

on early Mars (>3 b.y.a.) were very, different

fr:,m what they are today, and were similar to

early earth (McKay, 1986). Because Life on earth

is known to have originated during tiffs early

period on earth, the Martian environment could

have also been conducive to the origin of life. The

record of the origin and early evolution of life on

Earth has been obscured by extensive erosional

and tectonic activity. However, on Mars much of

the ancient heavily cratered terrain, dating back to

this early period, remains in pristine condition

and may hold a record ofevents that led up to the

origin and early evolution of life.

Recent studies by Nedell etal. (1987a), have

described an area of ancient (> 3 b.y.a.) lake sedi-

ments in the VaUes Marineris canyon system on

Mars. As the Martian atmosphere thinned and

the surface grew cold, these putative Martian

paleolakes, like the Antarctic lakes, would have

contained liquid water beneath a layer of ice, as

opposed to being frozen solid (McKay et al.,

1985). In addition to providing a relatively warm,

Liquid water environment, the process of concen-

trating atmospheric gases beneath the ice cover

could have significaady affected the gas budget in

those lakes, p6ssibly enhancing the levels of

biologically important gases from the thin Martian

atmosphere (Wharton et al., 1987). Also, it is pos-

sible that the sediments observed in the Valles

Marinens canyons could have been deposited by
sediment passing through ice in much the same

fashion as observed ka Lake Hoare, Antarctica

(Nedetl etal., 1987a, b; Simmons etal., 1986).
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Abstract

The benthos of a perennially ice-covered Antarctic lake, Lake Hoare, contained three distinct 'signatures'

oflipophilic pigments. Cyanobacterial mats found in the moat at the periphery of the lake were dominated

by the carotenoid myxoxanthophyll; carotenoids: chlorophyll a ratios in this high light environment

ranged from 3 to 6.8. Chlorophyll c and fucoxanthin, pigments typical of golden-brown algae, were founa.,
at 10 to 20 m depths wh':re the benthos is aerobic. Anaerobic benthic sediments at 20 to 36 m depths

were characterized by a third pigment signature dominated by a carotenoid, tentatively identified as
alloxanthin from plaatktonic cryptomonads, and by phaeophytin b from senescent green algae. Pigments

were not found associated with alternating organic and sediment layers. As microzooplankton grazers

are absent from this closed system and transformation rates are reduced at low temperatures, the benthos

beneath the lake ice appears to contain a record of past phytoplankton blooms undergoing decay.

Introduction

Lake Hoare (77 ° 38' S, 162 ° 53' E) is one of

seven perennially ice-covered oasis lakes in
Southern Victorialand, Antarctica, which have

received considerable attention in recent years
(Canfield & Green, 1985; McKay etal., 1985;

Parker & Wharton, 1985; Wharton etal., 1986,

1987, in press; Priscu et al., 1987). This freshwater
lake is 58 m above sea level with a surface area of

1.8 km, a maximum depth of 34 m, and a mean

depth of 14.2 m. The perennial ice cover of Lake

Hoare, which has thinned from 5.5 to 3.5 m

between 1978 and 1987 (Wharton et at., in press),

overlies water at a temperature of 0 ° C. The lake

receives both water and sediment from glacial

meltstreams and from nearby Lake Chad during

the austral summer. Lacking outflow streams, it

loses water only by ablation at the surface of the

ice and by evaporation from the surrounding
moat.

During the austral summer, photosynthetically

available radiation (PAR; 400-700 nm) between

1100-1500 h on December 23 ranged from about
44/aE. m -2. s-_ just beneath the ice cover to

0.06 #E. m - 2. s - i below the chlorophyll a maxi-

mum 12 m depth (Palmisano & Simmons, 1987).
A phytoplankton bloom of small flagellates be-

longing to the Cryptophyceae, Chrysophyceae,

and Chlorophyceae occurs during the austral

summer (Parker et aL, 1982; Seaburg et al., 1983).

In addition, four types of benthic communities
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havebeendescribedinLakeHoarewhichinclude
cyanobacteria,diatoms,and greenalgae:1. A
surfacecommunityin theice-freemoatsurround-
ingthelake;2._columnarlift-offmatbelowtheice
in shallow,brightlylit areas;3. aerobicprostrate
matsin deeper,dimlylit areas;and4. anaerobic
prostratematsbelow26m.Thealternatingbands
oforganicandsedimentlayers(AOSL)observed
inallcoresofaerobicandanaerobicprostratemat
byWhartonet al. (1983) suggested that these were

modern stromatolitic algal-bacterial mats.

Pigment analysis of marine and freshwater sedi-

ments has proven useful for identifying source

organisms, that is, organisms co nt_ributing organic
matter to sediments (Repeta & Gagosian, 1982;

Edmunds & Eglinton, 1984). Carotenoids, in

particular, are promising as chem0taxonomic
indicators, because many are specific to one algal

taxon such as myxoxanthophyll from cyanobac-

teria (Liaaen-Jensen, 1979). Our objective was to
examine both the benthos at the sediment-water

interface and the AOSL for lipophilic pigments

which may serve as biomarkers for microalgae in
Lake Hoare.

Methods

Sediment cores were obtained from six locations

in Lake Hoare (Fig. 1) during the austral summers
of 1985-86 (moat, DH1, DH2, RH1, GH1 and

DH4) and 1986-87 (moat, DH1, and DH2) by

SCUBA divers using 10 cm diameter Plexiglas

tubes. The cores were stoppered underwater,

brought to the surface where they were protected
from direct sunlight, and returned to a field labo-

ratory for processing. In the laboratory, water

above the sediment material was siphoned off,
and the cores were extruded on aluminum foil.

Discrete layers were sectioned from the cores
uslng a clean blade and forceps. These layers were

placed in clean glass vials, covered with black

tape, and returned frozen to NASA-Ames Re-
search Center. In addition, samples of surface
mat were also collected from the ice-free moat

areas at the periphery of the lake during 1985-86

_d !986-87.

Lyophilized mats were homogenized in 0 °C

90 5 acetone, extracted overnight, decanted, then
re-extracted for 1-2 h in fresh solvent. Pigments

N MOAT /_" CANADA
DH-1 \ ItS GLACIER

/ DH-4_RH-1

f,__ DEPTHS IN meters)

0 1 km

Fig. 1. Bathymetric map of Lake Hoare showing the location of six sites where benthic samples were collected.



were analyzed by high performance liquid chro-

matography (HPLC) on a reverse phase ODS

Hypersil column. The details of these analyses
will be described elsewhere (Palmisano etal.,

1988). Briefly, a non-linear gradient of 82_o
methanol, 13_, acetonitrile, and 5_ deionized

water was run against I00_o acetone; deionized

water contained tetrabutyl ammonium acetate as

an ion pairing agent (Mantoura & Llewellyn,

1983). Pigments were identified by absorption

maxima using ultraviole!_-visible spectroscopy

(Foppen, 1974) and co-chromatography with

standards, fl-carotene and chlorophylls a and b
were obtained from Sigma Chemical Co.;

phaeophytins a and b were made by acidification

of corresponding chlorophylls. Lutein, zeaxan-
thin, fucoxanthin, canthaxanthin, and echinenone

were generously donated by Hoffmann-LaRoche
Co. Myxoxanthophyll and chlorophyll c were iso-

lated from cyanobacteria and diatoms, respec-

tively, using thin layer chromatography (Jeffrey,

1981). Samples were preserved for microscopic

examination in Lugoi's iodine or 2.5_o glutar-

aldehyde.

Results

The dominant microflora in the benthic samples

based on light microscopy and the depths at

which they were found are summarized in
Table 1. The benthos was dominated by pigments

from either cyanobacteria, diatoms, cryp-

tomonads or green algae. Microscopic exami-

nation of freshly collected as well as preserved

Table I. Dominant photosynthetic microbiota in the benthos

of Lake Hoare,'Antarctica.

Site Date Depth Microflora

Moat 11/85 0.3 m cyanobacteria

1/87

DH2 11/85 10.5-11.5 m diatoms, frustules

1/87 10.5-11.5 m golden-brown monads

RH 1 11/85 18-20 m diatoms

GH I 11/85 21-26 m eoccoid green algae

DH4 11/85 28-30 m coccoid green algae
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samples revealed that detrital material was abun-
dant in the under-ice sites; microalgae from these

sites had shrunken chromatophores and appeared
to be senescent.

Three different lipophilic pigment 'signatures'

were evident in the chromatograms of lake sedi-
ments (Fig. 2). Altogether, a total of 23 different

pigments were isolated of which 17 have been

tentatively identified.

A pigment signature characteristic of cyano-
bacteria was found in the surface 0.5 cm of the

moat mats (Fig. 2; Table 2); these mats were

primarily composed ofNostoc sp., Oscillator_a sp.,
and Phormidium sp. Myxoxanthophyll, a caro-

tenoid specific to cyanobacteria, was the domi-

nant pigment in both the 1985-86 and 1986-87

moat samples; it represented > 60_o of the total

carotenoids by weight. Carotenoids: chlorophyll

a ratios in the moat mat were very high, ranging
from 3 to 6.8.

A second, distinct pigment signature was asso-
ciated with the aerobic benthos from a depth of 10

to 20 m (DH2, RH1) beneath the perennial lake

ice (Fig. 2; Table 3). The top few mm of the RH1

sample was divided into an upper and lower

section. Samples from two sites at this depth in
both 1985-86 and 1986-87 austral summer

contained pigments characteristic of golden-

brown algae such as diatoms and chrysophytes.

Fucoxanthin accounted for > 90_ of the total

carotenoids, and chlorophyll c, diatoxanthin, and

diadinoxanthin were also present. Microscopic

examination of these samples revealed diatoms,

Table 2. Lipophilic pigments from the cyanobacterial mat in

the moat of Lake Hoare (gg' g- l dry weight).

Pigment 1985-86 1986-87

myxoxanthophyll 9.9 4.7

lutein/zeaxanthin 0.8 0.3

chlorophyll a 5.2 1.0
echinenone 3. I 1.0

E-carotene 1.6 0.8

phaeophytin a trace trace

carotenoids:chlorophyll a 3.0 6.8

Trace amounts of 2 unknown carotenoids were also present.
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Fig. 2. High performance liquid chromatograms showing the relative absorbance at 440 nm of samples collected from the lake

moat, aerobic, and anaerobic sediments in Lake Hoare. Peaks are numbered as follows: 1, chlorophyll c; 2, fucoxanthin; 3-5

myxoxanthophyll; 6, diadinoxanthin; 7, diatoxanthin; 8, alloxanthin; 9, phaeophorbide b; 10, lutein/zeaxanthin; ! !-15, unknown

carotenoids; I6, chlorophyll a'; 17, echinenone; 18, chlorophyll a; 19, unknown; 20, phaeophytin b'; 21, /_-carotene; 22,

phaeophytin b; 23, phaeophytin a.



Table 3. Lipophilic pigments from aerobic benthos beneath perennial lake ice cover (#g' g- _ dry weight).

Pigments _ RHI top layer RHI lower layer DH2 DH2
1985-86 1985-86 1985-86 1986-87

77

chlorophyll c 38.8 27.0 62.0 1.2
fucoxanthin 246.9 117.7 449.2 6.5
chlorophyll a' 55.0 32.0 53.0 2.I
chlorophyll a 110.2 59.8 242.2 5.0
B-carotene 10.5 5.0 25.0 0.2
phaeophytin a 2.7 0.7 7.4 trace

I ,

O_

carotenoids:
chlorophyll a 1.5 1.3 1.5 0.9

Trace amounts of diadinoxanthin, diatoxanthin, and three unknown carotenoids were also found.

empty diatom frustules, and, in samples from site

DH2 1986-87, golden-brown monads. Caro-
tenoids: chlorophyll a ratios ranged from 0.9 to
1.5.

A third pigment signature was found at depths

of 20 to 30 m (GH 1, DH4) where the benthos is

anaerobic (Fig. 2; Table 4). The pigment profile

was dominated by a single carotenoid which has

been tentatively identified as alloxanthin based on

its spectral characteristics in chloroform
(2max = 436, 460, 489nm) and in ethanol

(2 max = 427, 451,480 nm; Foppen, 1974), and

by its relative migration on thin layer chromato-

graphic plates. This carotenoid is found in crypto-

monads such as Chroomonas lacustris, a promi-

nent member of the lake phytoplankton during the
austral summer (Parker et al., 1982). Alloxanthin

accounted for > 80_o of the total carotenoids in

these samples. Phaeophytins b and b' and lutein/

zeaxanthin were probably derived from senescent

green algae.
Layers from the AOSL below the top 1 mm of

cores from D"f[-I2,GH 1, and DH4 did not contain

any detectable lipophilic pigments in sections
down to a 15 cm depth. Moreover, an entire core
from DH1 in both 1985-86 and 1986-87 con-

tained almost exclusively empty diatom frustules.

Pigments were not detected in this core, nor were
cells stained with acridine orange to detect DNA

or Nile red to detect neutral lipids using epi-

fluorescent microscopy, suggesting an absence of
viable cells.

Table4. Lipophilicpigments fromanaerobic benthos beneath
perennial ice in Lake Hoare (#g. g- _dry weight).

Pigments GH1-Corel GHI-Core2 DH4

fucoxanthin 11.5 6.8 59.4
alloxanthin 95.5 108.9 70I. I
lutein/zeaxanthin 6.5 5.1 42.2
chlorophyll a' 11.8 12.5 72.1
phaeophytin b - - trace
/}-carotene 3.8 6.3 31.8
phaeophytin a !.6 1.4 18.9

Three unknown carotenoids in trace amo J_its
phaeophorbide b and phaeophytin b' were present.

Discussion

Three sites in Lake Hoare- moat, aerobic benthos

(10-20 m) and anaerobic (20-30 m) benthos -

had distinct lipophilic pigment profiles. These pig-

ments probably reflected differences in 1) in vivo

production by microalgae, 2) allochthonous in-

puts to the benthos from plankton, and 3) dif-
ferential degradation of pigments.

Cyanobacterial moat communities resembled
those found in nearby glacier-fed, ephemeral

streams (Vincent & Howard-Williams, 1986). The

epilithic stream communities are only metaboli-

cally active during brief periods in the austral
summer when glacial meltwater allows rehydra-

tion of the community. During the remainder of

the year, communities exist in a freeze-dried, but

viable, state. Upon rehydration, photosynthesis is
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initiatedwithin 20min, suggestingthat photo-
syntheticpigmentsarepreservedduringthewinter
(Howard-Williams& Vincent,in press).Moat
communitieshad carotenoids:chlorophyll a

ratios of 3 to 6.8. Carotenoids, such as fl-carotene,

undoubtedly help to protect cyanobacteria in
moat and stream communities from surface

downwelling irradiance which can reach 1680

/_E. m- 2. s - _ during mid-day in the austral sum-

mer (Palmisano & Simmons, 1987). While in vivo

production contributes to pigment synthesis,
allochthonous inputs are minimal. Pigment de-

gradation in surface communities can result from

photooxidation, however, temperatures below
freezing would help to preserve pigments (Vincent

& Howard-Williams, in press).

Golden-brown pigments in the aerobic benthos

beneath perennial ice may be partly the result of
a small amount of in vivo production by benthic
diatoms. Most benthic diatoms, however, were

senescent and failed to stain with vital stains.

Thus, at 10-20 m, allochthonous inputs from

sinking phytoplankton are probably the most
important contributors to the pigment signature in
our samples. A record of the brief plankton bloom

during the austral summer appeared to be pre-

served in the top few mm of sediment.

Lipophilic pigmsnts in the senescent or detrital-
based benthic microbial communities were sub-

ject to degradation. Repeta and Gagosian (1984)

suggested three processes for the transformation
of fucoxanthin in marine systems" ester hydrolysis

via heterotrophic metabolism primarily by

zooplanktonic herbivores, dehydration via bac-
terial metabolism, and epoxide opening via sl0w

chemical reaction. Because microzooplankton

grazers are virtually absent from the perennially

ice-covered lake, ester hydrolysis by this route

would be very limited. Chlorophyll degradation to

phaeophorbide by the actions of microzooplank-

ton grazers (Shuman & Lorenzen, 1975) also
would be severely reduced. Bacterial metabolism

is slower at ambient temperatures of 0 °C

(Pomeroy& Diebel, 1986), as are abiotic chemical

reactions. The combination of low light, low tem-

peratures, and the absence of microzooplankton

grazers might lead to a reduction in rates of pig-

ment degradation despite the supersaturation of
lake water with oxygen (Wharton et al., 1986).

It is unlikely that in vfvo production in the

anaerobic benthos, which contained apparently

senescent green algae, contributed significantly to
the pigments. Chlorophyll b, the primary light

harvesting pigment in green algae, was absent;

however, the presence of small amounts of

phaeophytin b' (an epimer of phaeophytin b)

probably resulted from decaying green algae. The

pigment profile was dominated by alloxanthin, the

principal carotenoid of cryptomonads; alloxan-
thin accounts for > 70_ of the total pigments in

pure cultures ofRhodomonas sp. and Cryptomonas

ovata (Pennington et al. 1985). The source of this

pigment might be a planktonic bloom of crypto-
monads. The structure of aUoxanthin is similar to

diatoxanthin in that both lack a 5,6 epoxide;

diatoxanthin degrades more slowly than caro-

ten0_dssuch as fucoxanthin (Repeta & Gagosian,

1984). Thus, the relative abundance of alloxanthin
in the anaerobic benthos in Lake Hoare may result

from inputs from phytoplankton coupled with

restricted degradation under anaerobic condi-
tions. :.....

Although laminations were apparent during
macroscopic examination of cores (AOSL), lipo-

philic pigmentswer e not found within these layers
with one exception. Fucoxanthin was found at

several mm depth in one core from DH2 on 11/85.

While we did not find any evidence of

cyanobacterial mats at depth in our pigment

analyses, this may be due to a patchy distribution
of mats beneath the ice cover, or to a PAR below

the compensatlon intensity for cyanobacteria.

Some redistribution of lipophilic pigments in the

benthos may have occurred by sediment focussing

by sliding of slopes (Hilton, 1985). However, our

study of pigment biomarkers clearly showed that

the lake benthos contains planktonic-derived
detrital material in addition to the cyanobacterial

mats previously reported (Wharton et al., 1983).
Lipophilic pigments, as well as other lipid

biomarkers such as stenols, stanols, and polar

lipid fatty acids, serve as a chemotaxonomic

record of microbial components. Orcutt etal.

(1986) found that lipid biomarkers in an anaerobic



prostratemat from Lake Hoare(31m depth)
strongly implicated diatoms as well as
cyanobacteria-asbiogenicsources.However,
their argumentfor cyanobacterialcontribution
waslargelybasedon thepresenceof C29stenols
which arealsofound in unialgaldiatomcom-
munitiesfromAntarcticseaice (P.D. Nichols,
personal communication).The phylogenetic
diversityreflectedin thelipophilicpigmentsfrom
the benthosof Lake Hoare is, nevertheless,
remarkable,consideringtheselectivepressuresof
low,episodicirradiance,lowtemperatureandlow
nutrients.Withits virtualabsenceof grazers,ice-
coveredLakeHoareprovidesasimplifiedsystem
for studyingthesourcesof pigmentbiomarkers
andpathwaysof pigmentdegradation.
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A_bmtra 

Lake Hoare in the Dry Valleys of Antarctica is covered with a perennial ice cover more than

3 meters thick, ye't there is a complex record of sedimentation and of growth of microbial

mat on the lake bottom. Rough topography on the ice covering the lake surface traps

sand that is transported by the wind. In late summer, vertical conduits form by melting

and fracturing, making the ice permeable to both liquid water and gases. Cross sections

of the ice cover show that sand is able to penetrate into and apparently through it by

descending through these conduits. This is the primary sedimentation mechanism in the

lake. Sediment traps retrieved from the lake bottom indicate that rates of deposition can

vary by large amounts over lateral scales as small as a meter. This conclusion is supported

by cores taken in a 3 x 3 grid with a spacing of 1.5 meters. Despite the close spacing of

the cores, the poor stratigraphic correlation that is observed indicates substantial lateral

variability in sedimentation rate. Apparently, sand descends into the lake from discrete,

highly localized sources in the ice that may in some cases deposit a large amount of sand

into the lake in a very short time. In some locations on the lake bottom, distinctive sand

mounds have been formed by this process. They are primary sedimentary structures and

appear unique to the perennially ice-covered lacustrine environment. In some locations they

are tens of cm high and gently rounded with stable slopes; in others they reach ,,,1 m in

height and have a conical shape with slopes at angle of repose. A simple formation model

suggests that these differences can be explained by local variations in water depth and

sedimentation rate. Rapid colonization and stabilization of fresh sand surfaces by microbial

mat composed of cyauobacteria, eukaryotic algae, and heterotrophic bacteria produces a

complex intercalation of organic and sandy layers that are a distinctive form of modern

stromatolite.



Introduction

Lake Hoare, Antarctica is one of several perennially ice-covered lakes in the Dry Valleys of

South Victoria LKnd. It has been a site for biological research since the late 1970's (e.g.

Allnutt, 1979; Allnutt et al., 1982; Parker et al., 1981; Wharton et al., 1983). More recently,

the lake has been intensively examined, including the local climatology (Clow et al., 1988),

the effect of climate on the ice cover (Wharton et al., 1989), the water chemistry (Wharton

et al., 1986, 1987), and the sedimentary geology (Nedell et al., 1987). One motivation for

this work has been the use of Lake Hoare as an analog for what may have been a similar

environment on Mars early in its history (e.g., Squyres, 1989). Another has been that

ice-covered lakes may be sensitive indicators of climatic change (Simmons et al., 1987).

Modern lakes that formed as a result of glacial action are numerous (Smith and

Ashley, 1985; Drewry, 1986), and glaciolacustrine settings are well known. The extensive

literature on processes in these lakes and on modern and ancient glaciolacustrine deposits

has been reviewed thoroughly (Gravenor et al., 1984; Smith and Ashley, 1985; Drewry,

1986; Edwards, 1986; Brodzikowski and van Loon, 1987). Perennially ice-covered lakes are

known in the antarctic (Wilson, 1982), the arctic (Barnes, 1960), and probably in high-

altitude settings at lower latitudes (Johan Reinhard, pers. comm.). Drewry (1986) noted

that perennially ice-covered lakes are distinct from other lakes in glacial settings because

there is little direct coupling between wind and water. Little has been known until recently,

however, about sedimentary processes in such lakes. In this paper, we describe processes

operating in Lake Hoare, and report the occurrence of unusual sedimentary structures that

may be useful in recognition of deposits of perennially ice-covered lakes elsewhere.

In a previous study, we suggested that the main source of deposition in Lake Hoare

is downward transport of sediment through the ice cover (Nedell et al., 1987). Although

there were no direct observations of this process, sedimentation through the ice cover was

inferred by the similar grain sizes and textures of the pebbly sand that is trapped on the

surface of the ice and also comprises most of the sediment at the lake bottom. We suggested

that sediment may penetrate the ice cover by migrating downward through porous ice at

the surface,through water-filledverticalbubble columns that penetratepartiallythrough

the icecover,and possiblythrough cracksinthe icethat act as conduits.



In this paper, we present conclusive evidence that sediment migrates through the ice

cover, using new data from the 1986/87 and 1987/88 field seasons. We describe unusual

sedimentary structures, discovered on the lake bottom during 1986, whose origin can be

explained by vertical settling of grains from sources in the ice cover. We also attempt to

correlate the stratigraphy of cores taken from a grid on the lake bottom by comparing the

texture, CaC03 and organic matter content, and biostratigraphy of the cores. All of these

results are used to infer the nature of sedimentation in Lake Hoare.

Background

Lake Hoare (77°38'S, 162°53'E) is at the eastern end of Taylor Valley in the Transantarctic

Mountains. The lake is 58 m above sea level, 4.1 km long, and 1.0 km wide at its widest

point. It has a surface area of 1.8 km 2, a maximum depth of 34 m, and a mean depth of

14.2 m (Fig. 1). The perennial ice cover, which exceeds 3 m in thickness, overlies water at

a temperature of 0°C. Less than 1% of the photosynthetically active radiation (0.4-0.7#m

wavelength) striking the surface penetrates the ice cover (Parker et al., 1982a). The lake

is a terminoglacial lake in the usage of Brodzikowski and van Loon (1987), and is dammed

by the Canada Glacier, which separates it from Lake Fryxell to the east. It receives water

from glacial meltstreams, from nearby Lake Chad, and from groundwater inflow near the

Canada glacier (Wharton et al., 1989) during the austral summer. Lacking outflow streams,

Lake Hoare loses water only by ablation at the surface of the ice, and by evaporation from

a zone of open water 3-5 m wide (called a "moat") that forms at the lake margins during

most summers. The material along the shoreline (except near the inflow streams) is coarse

and poorly sorted, with boulders up to 50 cm in diameter (Nedell et al., 1987).

The climate of the Dry Valleys is strongly seasonal as a result of the extreme southern

latitude. There are about four months of continuous sunlight in the summer, and four

months of darkness in the winter. The valleys are free of ice primarily because glacial flow

from the polar plateau is obstructed b_: the Transantarctic Mountains. In addition, local

ablation rates of snow and ice greatly exceed the annual snowfall. Recently, the first year-

round meteorological observations were obtained for Taylor Valley by Clow et al. (1988).

They established that the mean air temperature during 1986 at Lake Hoare was -17.3°C,

3
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the mean annual solar flux was ,,_ 92 W m -2, the mean annual relative humidity was 55%,

and the mean wind speed was 3.3 m s-1 (though highly variable).

Lake Hoaxe, like many of the other lakes in the Dry Valleys, supports numerous ben-

thic and planktonic microorganisms that have adapted themselves to near-freezing temper-

atures, low light levels, and high oxygen concentrations (e.g. Parker et al., 1982a; Wharton

et al., 1983). Microbial mats composed primarily of cyanobacteria, eukaryotic algae, and

heterotrophic bacteria cover most of the lake bottom. An unusual feature of the lake is

that the water column is supersaturated with 02 and N2, ranging up to 400% of saturation

for O2 and 160% of saturation for N2 (Wharton et al., 1986, 1987). Wharton et al. (1987)

proposed a model in which gases are supplied to the lake by inflow of aerated water, with

02 supplemented by biological activity. The presence of a perennial ice cover prevents free

atmospheric exchange and apparently leads to the high gas concentrations. Only about half

of the 02 present is a result of biological processes; the rest is supplied by aerated inflow.

The data presented in this paper were collected in the 1985/86, 1986/87, and 1987/88

field seasons. During 1985/86, twelve sediment traps were retrieved from four dive holes, the

locations of which are shown in Fig. 1. There were three traps in each dive hole. The traps

were deployed in December 1982, and retrieved in November 1985. During the 1986/87 and

1987/88 field seasons, core samples were collected from the bottom of Lake ttoare, and the

bottom topography and ice cover were observed by SCUBA divers working through five dive

holes. Throughout the entire 1986/87 field season (October 1986 through January 1987) a

video-equipped remotely-operated vehicle (Phantom 500 made by Deep Ocean Engineering,

San Leandro, CA) was used to visually survey the lake bottom at distances of up to ,,_100

m from the dive holes.

The Ice Cover

The environment in a Dry Valley lake is controlled to a large extent by the presence of the

thick perennial ice cover (Wharton et al., 1989). The ice cover eliminates wind-generated

currents within the lake (Ragotskie and Likens, 1964; Hawes, 1983). It greatly limits

exchange of gases between the water column and atmosphere (Wharton et al., 1986, 1987)

and light penetration into the water column below (Palmisano and Simmons, 1987). It also



appears to have a profound effecton the nature and rateof sedimentationthat takesplace

(Nedellet al.,1987).

Lake Hoare has a perennialicecoverbecause the mean annu;tlairtemperature isso

low. Water existsbeneath the icecover due to the factthat,for a limitedperiod in the

summer, airtemperaturesare above freezingand thereisinflowofrunoffand groundwater.

The presenceof a year-round ice/waterinterfacein the lakethereforeisdue to the combi-

nationof very coldmean temperaturesand comparativelywarm summer maxima (Wilson,

1982). A smallerseasonaltemperature range would resultin a lake that iseitherfrozen

completelyor one that melts fullyin the summer.

The topography of the ice cover on Lake Hoare is extremely rugged. Ridges of friable

ice that are 10-30 m wide and are oriented roughly parallel to the long axis of the lake (called

"ablation tables") stand _1 m above troughs, which are 1-10 m wide. At the beginning of

the summer season, the ice in the troughs is hard and clear. Sand that has become trapped

there may be visible in a layer a few tens of cm down. Later in the season after there has

been some melting, this ice becomes porous and friable. In many instances, melting begins

below the surface near a trapped sand layer, as solar energy is preferentially absorbed by

dark sand grains. As melting progresses, small pools of water form on the ice surface in

local topographic lows. Because the ice surface is extremely rough, wind-blown sediment is

easily trapped on the ice, much of it in these pools. Sediment settles in the pools of water,

from which it can migrate into the porous ice below.

Opposing any migration of material down through the ice cover is the upward move-

ment of the ice. New ice freezes at the ice/water interface, while ice is removed from the

surface by ablation. Parker et al. (1982b) have shown that microbial mat from the lake

bottom migrater_pward with the ice. In shallower regions of the lake, which are locally

supersaturated with dissolved gases, pieces of mat that contain gas bubbles tear loose from
w

the lake bottom and float up to the underside of the ice cover where they become frozen into

newly-forming ice. Parker et al. (1982b) estimated that it takes 5-10 years for the mat to

reach the surface, dry, and be dispersed by the wind. The cycling time for the ice cover was

independently estimated by Clow et al. (1988) to be _10 years, based on their calculated

sublimation rate (35 cm yr -1) and the measured ice thickness (3.3 m in 1987/88).



In order to gain a betterunderstandingof the physicalnature of the ice coverand

itsinteractionwith sediment,we made observationsof the distributionofsand and bubbles

in the iceduring tilemeltingof Dive Hole 2 (DH2). These observationswere made during

the lastweek of-November 1986. Dive holes are created by a melting process,using a

coilthrough which heated ethyleneglycolispumped (Love et al.,1982). Melted water is

pumped immediately from the hole.In order to avoid any alterationof the icethat might

have been caused by the holemeltingprocessitself,slabsoficewere chain-sawedfrom the

edge of the hole,cuttingintoundisturbed ice.The hole was melted in thisfashiondown

to a depth of 2.1 m. Once the hole reached thisdepth, itfilledrapidlywith water and

could no longerbe pumped dry.Apparently,the iceat and/or below 2.1m was sufficiently

permeable at that time thatlakewater was ableto penetrateintothe ice.Allobservations

between 2.1 m and the bottom of the icelayerat 3.5 m were made by diversin the hole.

Figure 2 shows the featuresobserved in the iceat DH2. A number of types of void

spaces are present. These include: Ca) largeopen void spacesflooredby a thin layerof

sand (only near the surface),(b)contiguousverticalbubble columns typically,,_10 cm in

length,(c)verticalbubble columns composed of small,separatedquasi-sphericalbubbles,

(d)columns ofsmallquasl-sphericaibubblesarranged toform distinctivepinnatestructures,

and (e)tabularbubbles -,_1 cm high and severalcm in diameter.No obviousfractureswere

observed at thislocation.

Within 2.25 m of the icesurface,some void spacesof alltypes except the pinnate

structureswere observedto containsand (Fig.3). During the 1986-87fieldseason,we found

no largetabularsand layersofthe sortreportedpreviously(Nedelletal.,1987).Below 2.25

m, no sand was observed in the ice.Itisinterestingthat the depth below which no more

sand was observed coincidedfairlycloselywith the depth below which the hole filledwith

water.

In October and November 1987,largelenticularsand bodies were observed in dive

holesat GH1 and RH1. These sand bodies underlieicewith fewer,smallerbubbles than

•thatdescribedabove. The iceand sand areinferredto representshallowponds that formed

on the ice surfaceduring the previous summer. The sand body at GH1 had a maximum

thickness of about 3 cm. The sand at RH1 was in a flat layer 2 cm thick at a depth of about

1 m. The coarsest clast observed was a granitic boulder 36 cm in length.



Beneatheach of these sand layers was ice with a bubble stratigraphy similar to that

described in Fig. 2. The ice in each of the dive holes also contained a vertical fracture. The

fractures were botl_ about 5 mm wide at the widest point and were oriented in an east-west

direction, paralle_ to the length of the lake. The fracture in GH1 extended to a depth of 2.7

m below the ice surface, and no sand was observed in it. The fracture at RH1 extended to a

depth of 2.6 m and contained coarse-grained, pebbly sand to a depth of 1.8 m. It is possible

that each fracture formerly extended to the base of the ice cover, and that the unfractured

ice below has been added since the fractures formed.

There is direct evidence that the ice cover becomes porous through its entire thickness

during the late summer season. During the dives in January 1987, air expelled by SCUBA

divers was observed at the ice surface near three dive holes, where it produced bubbles in

small pools of water on the surface of the ice.) During a diving operation at DH1, bubbles

were observed surfacing through a fracture ,,,8 m away from the dive hole. The fracture

itself was ,,_5 cm wide at the top and extended ,,,20 m up the lake towards the west. The

fracture was located on the edge of one of the ablation tables paralleling the long axis of

the lake. When bubbles were observed surfacing through this fracture, no bubbles were

observed surfacing through the dive hole itself. Also, no bubbles were observed surfacing

through the fracture except when a diver was under the ice in the vicinity of the crack.

At DH2 bubbles were observed to surface through small (< 5 cm diameter) holes at

two locations in the ice cover ,_12 and 15 m from the dive hole towards the Canada Glacier.

It was not clear if these holes were associated with a fracture. As at DH1, when bubbles

were observed surfacing through these holes, no bubbles were observed surfacing through

the dive hole. A day after the dive, bubbles were still surfacing through some of the same

small holes near the dive hole. Finally, bubbles were observed surfacing through small holes

in the ice ,,_5 m west of GH1. All of these observations indicate that the ice cover is locally

permeable to both-gases aud liquids.

One other observation regarding the ice cover may be noteworthy. Boulders are

observed scattered over much of the ice surface. Typical sizes are ,,_ 1 m. Near the Canada

Glacier, boulders may have been deposited directly onto the ice by the glacier. However,

the most plausible source of the boulders toward the other end of the lake is that they

rolled from the steep slopes bordering the lake (especially on the north side) out onto the



icesurface.Interestingly,some boulderslieseverM hundred m from the lakeshore. When

boulders are intentionallyrolledout onto the lakesurfacesfrom heightsof up to 1000 m

above the lakeshore on the steepnorth sideduringthe summer, they do not progressmore

than ,,_10 m ont_ the icesurface.One possibleexplanationfor thisdiscrepancyisthat

bouldersmight rolla greatdealfurtheroversmoother iceduringthe winter.Another isthat

they may rollout onto the margin of the lake,and then somehow become raftedtoward the

centerof the lakeby lateralmovement of the ice.We understand neitherthe detailsof any

posslblelateralicemotion nor a mechanism thatcould cause it.However, the possibilityof

lateralicemotion must be kept in mind when the formationof sedimentary structureson

the lakebottom isconsidered,sincewe show below that the primary mechanism by which

sedimentsenter the lakeisdownward transportthrough the icecover.

Lake Bottom Materials

Our previous work (Nedell et al., 1987) showed that the lake bottom sediment is moderately

sorted, medium-grained sand. The composition ranges from lithic arkosic to feldspathic

lithic sand (using the classification scheme of Folk, 1980). MateriaLs from the ice cover and

lake bottom are mineralogicaUy indistinguishable.

Microbial mats composed primarily of cyanobacteria, eukaryotic algae, and het-

erotrophic bacteria cover much of the bottom of Lake Hoare (Wharton et al., 1983; Parker

and Wharton, 1985). The filamentous cyanoba_terium Phormidiurn frigidurn forms the ma-

trix of the mat, and diatoms comprise the largest number of algal species. The actively

growing surflcial mat is usually less than 5 mm thick. Mats form a variety of distinct

morphological structures including small (< 10 cm) columns, knobs, and pinnacles (Fig.

4).

The benthic microbial mats of Lake Hoare may be considered modern stromatotites.

Stromatotites are defined as orgaaosedimentary structures produced by sediment trapping,

binding, and/or precipitation as a result of interaction with microorganisms (Awramik et

al., 1976; Walter, 1977). The antarctic microbial mats are currently trapping and bind-

ing sediments, precipitating various minerMs, and forming alternating laminae of organic

and inorganic material (Parker et al., 1981; Parker and Wharton, 1985; Wharton, 1982;

8



Wharton et al., 1983). The type of mat and resultant stromatolitic structure depend on

environmental factors including the amount of light penetrating the ice cover, the _lkaJinity

of the water, dissoived gas levels, and sedimentation rates and processes. Because there is

no bioturbation of the sediment or microbial mats that would result in a disturbance of the

organosedimentaxy structures, a coherent record of alternating organic and inorganic-rich

layers is preserved in the benthic sediment.

An additional important input of organic matter to the sediment is phytoplankton

deposition. Palmisano et al. (1989) have shown that pigments characteristic of phytoplank-

ton found in Lake Hoaxe contribute to the photosynthetic pigment content of lake-bottom

samples. It is probable that phytoplankton axe deposited annuM]y on both sediment sur-

faces and the surfaces of microbial mats. Also, organic matter and calcium carbonate may

be deposited through the ice surface.

Sediment Trap Data

Twelve sediment traps were deployed at the bottom of Lake Hoare in December 1982 and

January 1983. They collected sediment settling out of the water column for approximately

three years, and were retrieved in late November 1985. Three traps were arranged near each

of four dive holes: DH1, DH2, DH4, and GH1. Each trap consists of an aluminum funnel

that is 45 cm in diameter at the top, 47 cm deep, and narrows to 10 cm at the bottom. It is

attached at the bottom to a 4 1 plastic Nalgene container. The traps were placed in metal

stands that place the top of the trap about 2 m above the lake bottom. At each dive hole,

the traps were placed in a straight line with a spacing of 1-2 m, _,10 m away from the hole.

The material retrieved from the traps was analyzed for total dry mass, and for amounts of

organic matter, carbon,'_te, gravel, sand, and mud. The data are shown in Table 1.

The average sedimentation rate for the three years that the traps were deployed

was 3-4 mg cm -2 yr -1 near dive holes 1, 2, and 4. Near the glacier (GH1), the average

sedimentation rate was substantiMly higher, 142 mg cm -2 yr -1. Taking an average density

of the sediment of _ 1.5 g cm -3, the average thickness of sediment that was deposited in a

year was between 0.002 and 0.003 cm yr -1 near dive holes 1, 2, and 4, and ,,, 0.09 cm yr -1

near the glacier (Table 1).



From the data on the totalmass of materialrecoveredfrom each trap,itisevident

that the amount of sediment depositedfrom one diveholeto the next isextremely variable.

A more interestingobservationis that at dive holes 2 and 4, the amount of sediment

collectedin each"_rapwas alsohighlyvariable.Even among trapsseparatedby 1-2m, the

sedimentationover a three-yearperiodvariedby factorsof up to 17. At each location,the

amounts of biogenicsediment and mud in the threetraps are similar.Between locations,

the amount of mud decreaseswith increasingdistancefrom shore.The differencebetween

sample DH2-A and the other samples from DH2 and between sample DH4-C and other

samples from DH4 isthe amount of sand and gravel(Table I). This pronounced small-

scalespatialinhomogeneity in sedimentationrateisclearlyinconsistentwith settlingfrom

a lake-widesuspensionofsediment or from sediment-gravityflowsoriginatingupslope from

the traps.Itisconsistentwith falloutfrom highlylocalizedsediment sourceswithin the ice

cover.

Lake Bottom Topography

Further evidence for a sedimentation rate that varies considerably over short distances

is provided by the topography of the lake bottom. The bottom of Lake Hoaxe shows

topographic relief over a range of scales. Over distances of tens of meters, the bottom

shows the undulating topography characteristic of the glacial moraines that surround the

lake above the water line. At smaller scales, however, the topography is clearly non-glacial.

In many areas, the bottom topography at a lateral scale of a few meters is dominated by

small mounds (Fig. 5). These were first observed in detail at DH2. At this location they are

roughly equant in shape, up to ,,_ 1 m in diameter, and 20-40 cm in height. Typical surface

slopes axe _ 20°.---Excavation of the mounds shows that they are composed entirely of sand;

no rocks were present in any of the mounds examined. When blanketing mat material is

removed and sand on the flanks is disturbed, it does not readily flow downslope; evidently

the flanks of the mounds at DH2 axe not at angle of repose.

The mounds at GH1, where the sedimentation rate is much higher than at DH2, are

quite different. First, they axe significantly larger, reaching ,,_ 1 m in height. Second, they

are commonly conical rather than gently rounded. They have sharp peaks, and flanks that
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are at angle of repose. They have littleor no surfacemat, and when disturbed,the sand

on the flanksavalanchesreadily.

During October 1987,a sand ridgewas observed on the lakebottom at DHI. The

ridge,which was about 30 cm wide and 35 m long, paralleledthe crack in the icecover

(discussedabove) from which divers'bubbles were observed escapinginJanuary. A mound

was alsoobserved in detailat the same location.It was 15 cm high and about 50 cm

diameter. Figure 6 isa photograph of an epoxy peelof a box-core sample from the flank

of the mound. Microbialmat similarto the mat adjacentto the mound isfound below the

surfaceof the box-core sample. A wedge of moderately-sorted,medium-grained sand, 3 to

10 cm thickwithin the core,coversthe mat. Indistinctstratificationwithin the wedge is

roughly parallelto the surfaceof the sediment.

We believethat the sand mounds in Lake Hoare are primary sedimentary structures

that resultfrom the unique nature of sedimentationin a perenniallyice-coveredlake. If

sand that works downward through the icecover failsintothe lakefrom a highlylocalized

source,itwillaccumulate in a discretepileon the lake bottom. Ifthe icecoverismoving

laterally,the abilityof thisprocessto form mounds has some significantimplicationsforthe

rateat which sedimentationtakesplace.Individualmounds may form veryrapidly,perhaps

even in essentiallyinstantaneousevents.To our knowledge, such structureshave not been

found elsewhere,eitherundergoing depositionor preservedin the sedimentary record.We

willreturn to detailedconsiderationof theirformation in the discussionof sedimentation

mechanisms below.

Core Analyses
,.L=.-

During the 1986/J987 field season, sediment cores were taken from the lake bottom to

examine the stratigraphy of the lake-bottom sediment in water away from the influence of

the shore or inflowing streams. The cores were taken through DH2 at a water depth of

about 9.5 m. A relatively flat area was sampled in a 3 × 3 grid pattern, with a spacing of

1.5 m between each point. These cores were retrieved in December, 1986. The core tubes

were made of plexiglass, and had a diameter of 3.8 cm. One end was beveled, and they
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were drivenintothe lakebottom with a hammer to the depth at which frictionairesistance

made furtherpenetrationimpossible.The coresranged inlengthfrom 9 to 40 cm.

The stratigraphyof the coresfrom the 3 x 3 gridat DH2 isshown in Fig. 7. The

corescontainalternatinglayersoffine-to coarse-grainedsand and organic-richlayers(which

includedecomposed microbialmat, diatom frustules,and CaCO3). Samples taken from

cores2,3, and 5 were analyzed forsaltcontent,organicmatter,CaCO3, gravel,sand,and

mud; the resultsare summarized inTable 2.

Sediment in the coresissimilarto sediment observed elsewhereon the lakebottom

and to that collectedin the sediment traps. Most of the core materialis moderately to

poorlysorted,fine-to coaxse-grainedsand and pebbly sand. Most layerscontainvery little

interstitialmud (Table 2). The sand islaminated to very thin-bedded. Most layerslack

sharp boundaries,and stratificationgenerallyisindistinct.Both normally and inversely

graded beds are common, but many beds and most laminae are ungraded. Rhythmic

sequences or vaxveswere not observed in any part of these cores,and ripplesand other

evidence of tractivecurrentsare absent. Both graded and inverselygraded beds could

representdepositionby sediment-drivengravityflows,but definitiveevidence,such as a

complete Bouma sequence,has not been recognized.

Scattered layersof microbialmat occur throughout the cores. Most mat layers

are thinner than 1 cm. Internally,these are thinlylaminated with wavy, continuous to

discontinuouslayersof cohesivebiogenicmaterialinterstratifiedwith thin laminationsof

fine-grainedsand. Calcitecrystalsaxe locallyembedded in the mat, and carbonate cement

isconspicuousin sand withinabout i cm of some mat layers.

Mat layersaxe tentativelycorrelatedin Fig. 7. Most sand layersare difficultto

correlate,even over the short distanceof 1.5 m between adjacentcores.One sequence of

layersof relativelyfine-grainedsand, at the top of cores1,2,and 3,probably iscorrelative

and shows a change in thicknessfrom 8 cm to 4 cm in 3 m. Other differencesbetween

adjacentcoresappear to reflectabrupt changes inlayerthicknessover veryshort distances.

These changes probably are produced by the same processesthatcaused the localvariation

in sedimentationratesobserved in the sediment trapsand in the mounds on the modern
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lake bottom, suggesting that these processes have dominated lake-bottom sedimentation

throughout the time represented by the cores.

In the DIL2 sediment traps (Table 1), the rate of accumulation of mud was seen

to be relatively uniform over the area sampled, suggesting that mud is introduced in sus-

pension and is not controlled by the processes that form the mounds. In the cores, mud

is more abundant in layers of microbial mat than in layers of sand (Table 2). If the rate

of accumulation of mud during deposition of the sediment in the cores is comparable to

the rate represented by the 1982-85 sediment traps, then the amount of mud in the mat

layers suggests that a mat layer 3 mm thick could represent on the order of 10 years of

accumulation.

The biostratigraphy of organic-rich and sand-rich layers in the cores was determined

by observing subsamples of each layer microscopically (Table 3). All sediment layers ob-

served contained diatom frustules; however, the organic-rich sediment layers usually con-

tained at least an order of magnitude more frustules than the sand-rich layers. There are no

planktonic diatoms in Lake Hoare. Therefore, any diatoms observed in a sediment layer are

derived either from the surficial microbial mat or from sediment deposition through the ice

cover. As noted above, diatoms are abundant in the surficial mat. They are also common in

pieces of microbial mat found in the sediment on the ice cover surface. The relatively abun-

dant occurrence of diatom frustules observed in the organic-rich layers is consistent with

these layers having formerly been surficial microbial mat layers that subsequently have been

buried by sediment.

Cyanobacterial filament sheaths are found only within the organic-rich layers, which

consist of the cyanobacterial sheaths and embedded diatom frustules and CaCO3 crystals.

The filamentous'tiatrix was most likely a former surficial microbial mat that became buried

by sediment deposition. Once a rapid sand depositional episode has concluded, microbial

mat can be expected to recolonize the new sediment surface in a matter of just a few years.

Finally, rhombohedral calcite crystals were observed only within the organic-rich

layers in the benthic sediment. Wharton (1982) and Wharton et al. (1983) suggested that

these sharp-edged crystals were precipitated in situ within the microbial mat as a result of

the metabolic activity of the microorganisms.
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Radiocarbon (14C)dates forsediment samples collectedfrom Lake Hoare are shown

in Table 4. The radiocarbonagesof thesesedimentsrange from justunder 2,000 to nearly

6,000 years before1950. Despitethesegenerallyreasonabledates,there are trendsin the

data that cause us to doubt the validityof theirdetails.In particular,samples obtained

from greaterthan 20 cm in some of the cores(e.g.,4, 8, 10, 11) date the same age as or

significantlyyounger than surfacematerial.One possibleproblem isthat the sourcecarbon

forthesesystems may be relativelyold tobegin with. In thiscase,modern organisms would

be fixingand cyclingthisold carbon,givinga relativelyold apparent age.Another point is

thatrelativelylong-termrecyclingofcarbon withinthe lakecould resultinan averageage of

the inorganiccarbon in the the lakethatismuch olderthan the carbonate deliveredby the

meltwater streams. The variationsinthe radiocarbonages in the mat and sediment profile

could representchanges with time inthe rateat which carbon isbeing recycledor deposited
c,

inthe sediments.These changes could be drivenby changes inphytoplan_ton productivity

causedby changing nutrientinputsoricethickness.The onlyconclusionwe feelcomfortable

drawing from theseradiocarbondates,then,isthatthey are crudelyconsistentwith a mean

depositionrateof severaltensof cm in severalthousand years(i.e.,_ 0.01 cm/yr).

Sedimentation Mechanisms

We can now summarize the evidence concerning the sedimentation mechanisms that have

operated in Lake Hoare. Clearly, a certain amount of the fine sediment on the lake bottom

has been carried into the lake by inflow streams and has settled from suspension. Sediment

trap and core data show that this component of the total sediment flux is relatively uniform

spatially and very small relative to the flux of coarser materiM. We concentrate here, then,

on the mechanis_ for deposition of the sand and gravel that dominate the bottom of Lake

Hoare.

It is clear that the bulk of the sediments reached the lake bottom by downward

transport through the ice cover. The supply of sand on top of and within the ice cover is

abundant. Moreover, the characteristics of this sand (grain size distribution, grain texture,

mineralogy) closely match those of the dominant materials on the lake bottom (NedeU et

al., 1987).
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The source of the sand on the ice surface is eolian transport from the surrounding

terrain. The iaitial trapping of the sand on the ice surface appears to involve a feedback

mechanism (Simmons et al., 1986), in which sand is preferentially trapped in local depres-

sions on the ice. The accumulated dark sand results in enhanced local melting and further

deepening of the depressions, increasing the trapping efficiency of the topography.

The dominant mechanism for downward transport of sand through the ice appears

to be simple gravitational settling through water-filled fractures and degradation of the

integrity of the ice, making it permeable to gases (as shown by surface observation of

divers' bubbles) and liquid (as shown by rapid filling of a partially melted dive hole). When

a water-filled vertical conduit comes into contact with sand in or on the ice, the sand can be

washed downward to deeper levels in the ice. Transport appears to be particularly effective

in the lower ,,_ 1.25 m, where no sand was observed and where filling of the dive hole suggests

that the ice is permeable to water through a significant fraction of the summer season.

The distribution of fractures and voids in the ice is spatially inhomogeneous, and

one would expect a corresponding spatial inhomogeneity in deposition rates on the lake

bottom. This expectation is borne out by the sediment trap data, by the poor correlation

among closely-spaced cores, and, most dramatically, by the sand mounds observed at some

locations. All three indicators show that sedimentation rates can vary by an order of

magnitude or more over spatial scales of no more than a meter.

A particularly interesting problem concerns the details of the origin of the mounds.

They form when a discrete source of sand in the ice cover allows sand to accumulate in

a tightly localized region on the lake bottom. Because the mounds are so localized, it is

apparent that the source must not move laterally by an appreciable amount during the

deposition of th_mound. If there is any significant lateral motion of the ice over fairly

short timescales, then the formation of a given mound must be rapid with respect to this

motion. In fact, if a vertical conduit in the ice cover tapped into a large sand body on or

in the ice, this sand could rapidly drain to the lake bottom, forming a mound essentially

instantaneously. It should be noted that mounds axe not ubiquitous on the lake bottom.

Some regions instead have a subtle rolling topography that may be indicative of a more

steady sand supply. Such was the case in the location at DH2 where our grid of cores was
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obtained,althoughthere clearly was significant spatial inhomogeneity in deposition rate

there as well.

Based on .our understanding of the sedimentation process, it is possible to construct

a simple model of mound formation. We consider sand grains to be released from a point

at the underside of the the ice cover that does not migrate laterally during formation of

the mound. As each grain moves downward through the water column, it will experience

motions resulting from viscous drag forces exerted by the fluid. The lakes of the Dry Valleys

are stably stratified and, largely because of their ice covers, remarkably free of currents. The

horizontal motions experienced by the grain as it settles, then, will be dominated by the

forces that result from irregular flow of water around the non-spherical grain. The settling

grain will undergo a series of small lateral deflections in response to these forces, each

essentially random in direction. The absolute magnitude of each of these deflections will,

of course, depend in a complex manner on grain size and shape.

Mathematically, the motions of the grain in the horizontal (x and y) directions may

be thought of as a symmetric random walk. Therefore, if the grain begins its descent at

x = 0, y = 0, the probability density function of a: and y after the grain descends some

distance z will be a normal (i.e., Gaussian) distribution with mean 0 and some standard

deviation (r. The value of a will be a linear function of z, and also a function of grain size

and shape. The probability density function of x and y for all grains can rigorously only be

determined by integrating over aLl grain sizes and shapes; we adopt a normal distribution

with mean 0 and standard deviation a = a%. So, for a given lake depth z, this Gaussian

distribution gives the probability density function of the initial z and y settling positions

of the grains forming the mound. The mound, at least initially, will itself have a Gaussian

profile. Growth of the mound will continue in this manner until angle of repose is first

reached on some segment of the slope. Grains settling on an angie-of-repose slope will not

remain fixed in position, but will move downhill at least until reaching a position where the

slope angle is less than angle of repose.

In Fig. 8, we show the results of a numerical simulation of this process. Grains are

randomly dispersed in z with a normal distribution, and allowed to accumulate with the

proviso that when addition of sand would cause the angle of repose to be exceeded locally,

that sand moves downslope until it reaches a position where its addition does not cause
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angleof reposeto be exceeded. Angle of repose is taken to be 35 ° . The upper part of Fig.

8 shows a calculation for a mound similar to those observed at DH2. The height is ,_30 cm,

and the diameter is _1 m. The slope is everywhere below angle of repose, and a gently-

rounded Gaussia_ shape like that observed at DH2 is seen. For this mound a _ = 0.025

and, because z = 9.5 m, a = a_z _- 24 cm. The lower part of Fig. 8 shows the results of a

similar calculation for a mound at GH1. Again, a _ = 0.025, since a j is a characteristic of the

grains, and should not vary significantly from one location to another. However, there are

two differences from the mound in the upper figure. First, since the water is approximately

twice as deep at GH1 as it is at DH2, we take arz __ 50 cm. Second, this mound is taken to

have a volume that is approximately twenty times that of the one in the upper figure. The

factor of twenty was chosen because it is comparable to the difference in sand sedimentation

rates measured at DH2 and GH1 (e.g., DI,I2-A and GH1-A in Table 1). With a volume this

large, the mound grows to a height of nearly 1 m. Moreover, while it begins with a broad

Gaussian shape, it eventually reaches angle of repose over most of its slopes, producing a

straight-sided, sharp-crested cone like the ones seen at GI,I1. This simple model for mound

formation suggests, then, that the differences in mound morphology and size observed at

DI,I2 and GI-I1 can be attributed simply to the differing sedimentation rates and water

depths at the two sites.

Colonization of the lake bottom by microbial mat appears to be quite rapid after

a deposition "event" has taken place. Only at GH1 is the sedimentation high enough

that most mounds are not colonized by mat. As subsequent deposition takes place, mat

material is buried, forming the alternating sand and mat layers found in the cores. The

organosedimentary structures being formed are modern-day stromatolites, albeit of a rather

different structure than is found in most marine or lacustrine depositional environments.

Recognition of Deposits of Perennially Ice-Covered Lakes -- Deposits in the geologic record

of perennially ice-covered lakes should be recognizably different from those of other settings.

Glaciolacustrine settings commonly are dominated by inflow of clastic material (Smith and

Ashley, 1985; Drewry, 1986). Depending on the relative density of inflowing water and
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lakewater, overflow, interflow, and underflow may be important in distributing sediment

throughout the lake. Away from the lake shore, glaciolacustrine deposits commonly include

rhythmic layers (varves), and clear evidence of tractive flow from underflow or turbidity

currents (Smith _nd Ashley, 1985; Weirich, 1986).

As we have shown, a perennially ice-covered lake is different in several important

ways from more typical glaciolacustrine environments, substantially affecting the sedimen-

tation process there. The sedimentary structures we observe may be distinguished from

those formed by other processes. For example, the mound illustrated in Fig. 6 consists of

moderately sorted, medium-grained sand with very subtle internal layering. Larger mounds

may show distinct internal lamination, either from variations in the texture of sediment de-

livered to the mound, or from avalanching on flanks that are at the angle of repose. These

mounds are not internally cross-stratified, which will be helpful in distinguishing them from

hummocky cross-stratified sand deposited during storms (Eyles and Clark, 1986).

Conical mounds up to 2 m high of distinctly to indistinctly stratified, poorly sorted

sandy gravel and pebbly sand observed in Pleistocene glaciolacustrine deposits in Scotland

were interpreted by Thomas and Connell (1985) as iceberg dump structures. These are

coarser and more poorly sorted than the mounds we have studied. Also, the interstratified

sediment studied by Thomas and Connell (1985) consists largely of rhythmically interbedded

sand and fine-grained sediment, and contains turbidites. The texture of the mounds and the

nature of the associated deposits should distinguish sand mounds formed in a perennially

ice-covered lake from coarser sediment dumped by icebergs.

Ice over a continental shelf in a glaciomaxine setting could trap and transmit sediment

as it does in Lake Hoaxe. Modern and ancient glaciomarine sedimentation has been reviewed

by Anderson (1_3), Eyles et al. (1985), and Anderson and Molnia (1989). Glacial and

ice-rafted marine sediments commonly axe reworked by currents or redeposited by sediment-

gravity flows, so the preservation potential in marine environments of mounds like the ones

we have studied may be less than in ice-covered lakes. Associated sediments also are gener-

ally different. In addition to reworked deposits showing marine influence, many glaciomarine

sediments axe associated with carbonates that in Phanerozoic examples typically include

skeletal fragments of marine animals (Anderson and Molnia, 1989). Therefore, glaciomarine

facies probably are readily distinguishable from deposits of perennially ice-covered lakes.
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In summary, sand mounds may form where sediment istransportedthrough icein

many glaciolacustrineor glaciomarinesettings.Depositsof a perenniallyice-coveredlake

likeLake Hoaxe should be distinctive,however,showing a sand mounds of the sortwe have

described,an ass6"mblageof depositsgenerallylackingin evidenceoftractivecurrents,and

perhaps microbialmat developed where the sedimentationrateislow.

Relationship o.fLake Hoare Stromatolites to Others in the Geologic Record-- Awramik

et al. (1976) have reviewed the distribution of known Holocene stromatolites. Most modern

stromatolites occur in (1) unusually warm and highly saline marine habitats, (2) temper-

ate, tropical, and/or alkaline lakes, or (3) certain streams and hot springs. Parker et al.

(1981) first reported the presence of modern stromatolites forming in antarctic Dry Valley

lakes, and suggested that these structures are unique in the Holocene world. The micro-

bial mats associated with these structures are adapted to extremely low light intensities,

cold temperatures, fresh to saline water, as well as conditions ranging from anaerobic to

supersaturated with oxygen. Parker et al. (1981) and Simmons et al. (1985) have gone so

far as to suggest that the low fight intensity, lack of burrowing and browsing organisms,

and lack of turbulence in these lakes may mimic the Precambrian deep-water stromatofite

environment. Wharton et al. (1989) suggest that it is a misconception that stromato-

lites (including modern forms) develop only in warm and/or saline environments. Several

periods of glaciation may have occurred during the middle and late Precambrian -- time

periods when life was microbial and stromatolites were abundant (Frakes, 1979; Anderson,

1983; Walter and Bauld, 1983, Edwards, 1986). The modern stromatolites of Lake ttoare

could be more closely related to Precambrian stromatolites than previously recognized, and

particularly to stromatolites formed in Precambrian polar environments.

Conclusions

Our resultsfrom the 1986/1987 and 1987/1988 fieldseasons indicatethat the primary

mechanism of sedimentation in Lake Hoare isdownward transportof sand through the

lake'sperennialicecover.Transport takesplacethrough verticalconduitsinthe iceformed

by seasonalwarming latein the summer. Long-term averagesedimentationratesaxe ofthe

order of 0.01 cm/yr for much of the lake,but may be locallymuch higher for very short
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periods when a sand deposition event takes place. Sedimentation from discrete sources in

the ice cover results in considerable spatial inhomogeneity in deposition over lateral scales

as small as a meter. Rapid colonization of fresh sand surfaces by microbial mat produces the

vertically and la_rally complex intercalation of organic and sedimentary materials observed

in our cores. In some locations, rapid and highly localized sedimentation has built distinctive

sand mounds on the lake floor. The size and morphology of the mounds appear to be

controlled directly by sedimentation rate and water depth. They are primary sedimentary

structures that to our knowledge have not been found elsewhere, and that appear unique

to the perennially ice-covered lacustrine environment.
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Figure Captions

Figure 1: Bathymetric map of Lake Hoare, showing the locations of dive holes in the ice
cover.

Figure 2: Schematic representation of the form, distribution and concentration of the ma-

jor features found in the ice at DH2. Void features observed include large open spaces

floored with sand, contiguous vertical bubble columns, vertical bubble columns com-

posed of small spherical bubbles, vertical bubble columns with pinnate geometries, and
tabular bubbles. Voids filled with sand are shown as dark.

Figure 3: Sand-filled vertical bubble columns exposed on the wall of DH1. The horizontal

structures in the ice are produced by the melting process.

Figure 4: Microbial mat on the bottom of Lake Hoare. Vertical structures are caused by

liftoff of mat from the lake bottom, induced by production of buoyant gas bubbles that

form under supersaturated conditions. Scale across the photograph is approximately 2
m.

Figure 5: Large sand mound at GH1. The mound is about 1 m high; marks on the bottom

to the left of the mound are diver's footprints. Sand in the mound is near angle of

repose and is covered by a very thin layer of organic material.

Figure 6: Epoxy peel of box core of mound at DItl sampled on 25 October 1987. Peel is

14 cm wide. Sand in mound forms a 3 to 10-cm thick wedge at top of peel overlying a

later of microbial mat like that on the lake bottom surrounding the mound.

Figure 7: Stratigraphy observed in cores taken at DH2. Inset shows core layout. Inferred

stratigraphic correlations across grid rows are indicated by roman numerals. Substan-

tial variations among the cores indicate that there are large variations in sedimentation

rate over lateral scales smaller than the core spacing (1.5 m).

Figure 8: Results of numerical models of mound formation. Top: Ten profiles during growth

of a mound in 9.5 m of water at DH2. Result is a rounded, nearly Gaussian-shaped

mound with a height of ~30 cm and a diameter of ~1 m. Bottom: Result for a mound

at GH1. Compared to the calculation at top, the water depth is increased to 20 m,

doubling the lateral grain dispersion, and the mound volume is scaled upward by the

approximat%difference in sedimentation rate measured at the two sites. The result

here is a large conical mound with slopes at angle of repose.
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Table 1

Summary of Sediment Trap Data: Deployed 1982,Retrieved 1985

All weightsreportedingrams

Trap ID Total dry Organic Carbonates Gravel Sand
Mass Matter

DH!-A 17.52 0.81 6.61 0.00 0.25

DH1-B 24.38 0.63 13.79 0.00 0.43

DH1-C 16.95 1.10 6.04 0.00 0.61

DH2-A 44.25 3.11 2.46 3.88 32.65

DH2-B 4.58 0.21 !.52 0.00 r0.00

DH2--C 4.98 0.48 1.41 0.64 0.10

DH4-A 2.58 0.10 0.22 0.00 2.13
L

DH4-B 2.08 0.13 0.18 0.00 1.67

DH4-C 36.35 0.32 0.89 2.58 32.39

GHi-A 633.00 39.69 18.38 0.00

GH2-B 544.60 4.30

GH3-C 856.20 7.53

15.30 0.00

30.74 0.0'0" 813.97

Mud

9.85

9.53

9.20

2.15

2.85

2.35

0.13

0.10

0.17

1.51

2.24

" 2'.94

Other

0

0

0

0

0

0

0

0

0

1.00

0.02

1.02
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Table 2

Cores from 1986-87FieldSeason,Lake Hoare, Dive Hole 2

Sample _Dry Wt. % IC 1 %OC 2

2B 21.9881 1.9 0.1

2C 13.3451 2.5 0.1

2D 13.7311 2.3 0.5

2E 5.1587 3.4 0.3

2F 22.7844 1.6 0.1

2G 4.7932 3.7 1.0

2H 13.7731 1.9 0.0

2I 1.9907 40.8 13.1

2K 22.4789 2.1 0.1

3B 14.5965 1.9 0.1

3C 10.6028 1.7 0.0

3D 13.1691 2.4 0.1

3E 13.4224 2.1 0.:2

3F 1.4695 19.2 2.7

3G 1.4176 38.9 9.0

3H 10.8840 1.5 0.1

5B 6.1408 3.7 0.1

5D 9.8468 2.6 0.2

5E 9.9516 2.0 0.2

5G 11.8841 _" 1.7 0.2

5I 18.1378 2.3 0.2

% Salt

0.0

0.I

0.3

0.2

0.i

0.2

0.2

0.i

0.I

% Gravel

0.3

4.9

0.5

0.0

0.5

1.2

0.9

0.0

0.3

0.5

% Sand

97.5

91.4

95.7

93.0

97.6

91.8

96.7

40.2

97.0

97.2

% Mud

0.2

1.0

0.7

3.1

0.1

2.1

0.3

5.9

0.4

0.2

0.0 1.8 96.3 0.2

0.2 0.0 96.5 0.8

0.3 0.6 96.4 0.4

* 0.0 75.0 3.1

* 0.0 49.0 3.1

0.0 0.0 98.3 0.1

0.2 0.6 94.0 1.4

0.3 1.5 93.4 2.0

010 1.9 95.7 0.2

0.0 0.0 97.9 0.2

0.2 0.3 96.2 0.8

1. Carbonates soluble in 3 N HCI.

2. Organic matter soluble in 20% H202.

* Not measured.

p

26



Table 3

Microscopic observations of sediment cores from 1986-87 field season,
Dive Hole 21

Sample Type 2 CaCOss
+2A OR ++

2B SR - + -

2C - + -SR

OR

SR

OR

OR

OR

SR

OR

SR
OR

2E

2F

2G

2i*

2J

2K

3A

3E

3F*

3G*

5A

5C

5D

5F

5G

5H*

5I

Frustules 4 Filaments s

- ++ -

- ++ -

+ ++ +

+ ++ -

- ++ -

+ ++ +

+ ++ +

+

+

w

+

+

OR

OR

OR

SR

OR

SR

OR

SR

++ +

++ +

++ +

+

++ +

+

++ +

+

I.Severalsubsamples (< 1 g per slide)ofeach corelayerwere observed microscopicallyat

100,400, and 1000 x magnification.

2. Type refers to visual observation of layers in split cores; OR = organic-rich, SR =

sand-rich layer.

3. Carbonate crystalsare composed ofcalciteand typicallyrhombohedral in shape (Whar-

ton,1982;and Wharton etal.1983) + = calcitecrystalspresent;- = crystalsnot observed.

4. Diatom frustules predominantly species of Caloneis, ttantzchia, Navicula, Nitzschia, and

Stauroneis. ++'_ abundant (> 100 frustules per slide); + = few (< 100 frustules per slide).

5. Filaments are observed in a "matrix" which consists of cyanobacterial filament sheaths

(probably Phormidium sp.), diatom frustules, and CaC03 crystals. + = filaments present;
- = filaments not observed.

* sample light-colored probably because of CaCO3.
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Table 4 :_

:4C Dates forSediment Samples in Lake Hoare, Antarctica,

CollectedDuring 1985 and 1986 FieldSeasons.

Sample 1 14 C

85DH2S 3 1935

85DH47A1 3975

85DH47B 3435

85DH47F 41'80

85RH1S 2780

85RH18E 2650

86DH2S 4355

86DH1

86DH2-SA

86DH2-8B

86DH2-gB

.

.

Age 2 Collection depth, % CaC0a % Organic
cm matter

4- 608 0 48.19 -t- 3.71 18.87 4- 0.24

4- 1205 0- 1.5

4295 4- 95

3.95

35

4.72

3. 4- 495 4- 6 3.34 5.75

4. 4- 475 20 - 21 2.59 4.72

5. 4- 650 0 6.82 6.64

6. 4- 1115 7.5- 9.5 48.24 6.19

7. 4- 305 0 * *

8. 3645 4- 250 15- 22 * *

9. 5935 4- 55 0 * *

10. 4620 4- 80 34 * *

11. * *

1. Samples 1-8 were analyzed by Kruger Enterprises, Inc., Geochron Laboratories Division,

Cambridge, Mass.; samples 9-11 were analyzed by the NSF Accelerator for Radioisotope

Analysis, University of Arizona, Tucson, Ariz. To the extent possible, CaCO3 was removed

from all samples before dating. All samples were corrected for 13C.

2. Years before 1950.

3. Sample collection notes: 1. 85DH2S Surface microbial mat from Dtt2 collected by grab

sample 11-85. 2. 85DH$TA1 Surface microbial mat layer obtained from core from DH4

collected 11-85; black flocculent material; H2S smell. 3. 85DH_7B Organic and sand-rich

layers obtained from core from DH4 collected 11-85. 4. 85DH_7F Organic-rich layers

obtained from core from DH4 collected 11-85. 5. 85RIIIS Surface mat from RH1 collected

by grab sample. 6. 85RH18E Organic-rich layers obtained from core from RH1 collected

11-85. 7. 86DH$S Surface mat from DH2 collected 1-87 by grab sample. 8. 86DH1 Layers

of organic-rich material obtained from core from DH1 collected 1-87. Layers dark-green,

leaf-like, very competent and tissue-like. 9. 86DH$-SA Surface mat from DH2 collected

11-86. 10. 86DH2-SB Layer of organic-rich material obtained from core from DH2 collected

11-86. 11. 86DH2-gB Layer of organic-rich material obtained from core from DH2 collected
11-86. ---"

* Not measured _
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During the next 50 years, human civilization may well begin expanding into the solar system. This colonization of extraterrestrial
bodies will most likely begin with the establishment of small research outposts on the Moon and/or Mars. In all probability these
facilities, designed primarily for conducting exploration and basic science, will have international participation in their crews, logistical
support and funding. High fidelity Earth-based simulations of planetary exploration could help prepare for these expensive and
complex operations. Antarctica provides one possible venue for such a simulation. The hostile and remote dry valleys of southern
Victoria Land offer a valid analog to the Martian environment but are sufficiently accessible to allow routine logistical support and to
assure the relative safety of their inhabitants. An Antarctic research outpost designed as a planetary exploration simulation facility
would have great potential as a testbed and training site for the operation of future Mars bases and represents a near-term, relatively
low-cost alternative to other precursor activities. Antarctica already enjoys an international dimension, an aspect that is more than
symbolically appropriate to an international endeavor of unprecedented scientific and social significance -- planetary exploration by
humans. Potential uses of such a facility include:

1) studying human factors in an isolated environment (including long-term interactions among an international crew);

2) testing emerging technologies (e.g., advanced life support facilities such as a partial bioregenerative life support system, advanced
analytical and sample acquisition instrumentation and equipment, etc.); and

3) conducting basic scientific research similar to the research that will be conducted on Mars, while contributing to the planning for
human exploration. (Research of this type is already ongoing in Antarctica).

1. INTRODUCTION

Throughout the history of space exploration, simulation
facilities have played an important role in defining and
designing space missions. The complex nature of the
challenge and the many options that will be available as
humans embark on exploration missions beyond Earth orbit
will require that, in the early stages, simulation facilities be
established on Earth. Indeed, a full range of simulation
facilities may be required to enable us to understand the
complexities involved in exploration missions that transport
humans to the Moon once again and then outward to the planet
Mars. These facilities may range from small scale
environmental simulations and/or computer models that will
aid in the development of new materials to full scale mockups
of spacecraft and planetary habitats. It may be useful to place
a large scale simulation facility such as a planetary habitat
designed for the Martian surface in an Earthly environment that

duplicates (to as great a degree as possible) the conditions in
which it will be used by future occupants.

Antarctica's potential as an analog environment for
planetary exploration was recognized by space flight pioneers
Ernst Stuhlinger and Wernher yon Braun as early as 1966 [I].
They suggested that "the basic problem was how to provide a
group of scientists in a remote Antarctic outpost with the
necessary support which would permit them to live and work
under extremely hostile conditions. This problem, which is
easy to formulate but very hard to solve, is encountered in a
very similar form by those preparing the astronauts' flight to
the Moon and later to the planets."

Recently, there has been renewed interest in Antarctica as
an analog for space environments and exploration [2,3,4,5,6].
Both the United States and the Soviet Union have initiated
planning activities and research directed at missions and
possibly settlements on the Moon and Mars. Such missions
may be preceded by timely investigations of the effects of
long-term isolation on human behavior and performance and to
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this end, Antarctica can be used as an experimental analog for
much of the research in space sciences. Studies on the
psychological, physiological and sociological aspects of long-
term isolation will provide insight into many issues having an
impact on the achievement of mission goals through
maximization of crew performance, efficiency and
effectiveness. Research activities similar to the scientific
exploration activities of a crew on a planetary surface could
also be conducted on an Antarctic outpost. Additionally, an
Antarctic simulation facility could be used to develop and test
critical technological systems and concepts that may be
required for future exploration missions.

It is suggested that a planetary exploration simulation
facility in Antarctica could provide an immediate, economical
analog (relative to the cost of a mission to Mars) for the
development of a program directed at human exploration of
Mars. The essential elements of a planetary exploration
simulation facility are discussed and locations on the Antarctic
continent where such a facility might be located are considered.
The political and programmatic aspects of such an endeavor are
also considered.

2. ELEMENTS OF AN ANTARCTIC
PLANETARY

EXPLORATION SIMULATION FACILITY

A round-trip, human mission to Mars is currently anticipated
to take up to three years, including a stay time of about one
year on the Martian surface [7,8,9,10]. Given the importance
of such a mission and the high costs likely to be associated
with the effort, it is crucial to learn as much as possible prior
to sending the first crew to Mars. The need to understand the
problems associated with future missions to Mars argues for a
simulation facility capable of providing mission planners and
astronauts with an environment that resembles planetary
conditions with the greatest possible degree of fidelity. The
facility must also be capable of providing preparatory work in
the range of scientific disciplines likely to be included on a
Mars mission. A simulation facility might include three
principal elements:

-- Human factors research;

-- Testing of critical technologies; and

-- Research in scientific disciplines relevant to the
exploration of other planetary bodies.

Human factors research would comprise such areas as crew
selection; training; psycho-social interaction; habitat design
and architecture; human-machine interactions; and
psychological, behavioral and physiological studies of humans
in remote, isolated and potentially h_ardous environments.

The testing of critical technologies would include the use
and evaluation of advanced life support facilities such as a
partial bioregenerative life support system. Continuous
recycling of fresh water and the harvest of fresh vegetables
would not only provide greater comfort to the inhabitants of
such a remote field research facility but would significandy
increase their self sufficiency while providing engineering tests
of the equipment. Portable life support systems for planetary
508

extravehicular activity could also be tested at this simulation
facility. While there are significant differences in atmospheric
pressure between Mars and Earth, (7.0 mb vs 1.0 bar
respectively) [11] temperature regimes are not that dissimilar
between Mars and the dry valleys of Antarctica. The need for
comfortable, low bulk environmental protection in both of
these hostile environments is a necessity for activities outside
of the habitat. The test and evaluation of relevant technologies
should include the design of teleoperated rovers and portable
analytical instrumentation as well as techniques for sampling
and in situ analysis during egress activities. Teleoperated
vehicles could augment the capabilities of scientists at remote
field locations by providing them with the ability to explore
inaccessible or hazardous areas. At the same time, the use of
such vehicles at the simulation facility would provide an
opportunity to test, evaluate and develop telepresence
technology for use on Mars.

Scientific investigations at the simulation facility would
include field studies in geology, biology and astronomy
relevant to the science to be carried out on future planetary
missions. This would not only provide a broader base for
developing a scientific rationale for the exploration of
planetary bodies but would give the occupants of the
simulation facility meaningful tasks in which they have a
vested scientific interest. Such "real work" would be useful to

the planning of scientific studies on the exploration missions
and would, at the same time, allow more valid human factors
research to be conducted.

It is envisioned that a small outpost, capable of
supporting four to six individuals, would be placed in the
Antarctic to accomplish the aforementioned simulation
activities. The facility would be capable of housing this group
for up to one year (or longer). Initial designs for an Antarctic
habitat may differ significantly from that which will
eventually be emplaced on the surface of Mars (i.e., Antarctic
designs would not have to account for the lower atmospheric
pressure of Mars), although the facility could and indeed,
should evolve towards the actual design of the habitat to be
used on Mars.

3. WHERE IN ANTARCTICA: DRY
VALLEYS

OR POLAR PLATEAU?

The continent of Antarctica has been isolated from other land
masses for some 60 million years and is now separated from
its closest neighbor, South America, by the 1,000 km Drake
Passage. The continent lies almost entirely within the
Antarctic Circle and has the highest average elevation in the
world, about 3,000 m. At 14.2 million km 2, Antarctica has
an area approximately the size of the United States and Mexico
combined. It has a challenging environment, with
temperatures on the polar plateau averaging -60 ° C and an
annual snowfall rate of < 5 cm (water equivalent). Most of
the continent is covered by an ice cap several km thick; only a
small percentage, mainly near the coast, remains ice-free. The
dry valleys of southern Victoria Land, the largest of these ice-

free regions, are approximately 4,000 km 2 in area [12].
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• An Antarctic Research Outpost as a Modelfor PlanetaryExploration

Fig. 1 shows the orientation of Antarctica with respect to
the other land masses as well as the location of the dry valleys
of southern Victoria Land.

Generally speaking, there are two locations on the
continent of Antarctica suitable for the emplacement of a

simulation facility(ies) - on the polar plateau or in an ice-free
dry valley. The unique attributes of each site lend them to
very different functions as simulation facilities.

It is suggested that the Antarctic dry valleys are
potentially better analogs to planetary conditions (with an
emphasis on field exploration and science) than sites on the
polar plateau. Simulation facilities in the southern Victoria

Land dry valleys would be close to the main U.S. base,
McMurdo Station (fig. 2) and New Zealand's research facility,
Scott Base (fig. 3), making them logistically more convenient
and less expensive to maintain than stations high on the polar
plateau.

Fig. 2 McMurdo Station, the main U.S. station in Antarctica, as
seen during the austral summer from nearby Observation Hill.
McMurdo Station is located on the southeast end of Ross Island.

Fig. 1 Map of the dry valley region within southern Victoria Land,
Antarctica. The Polar Plateau is to the west.

Fig. 3 Scott Base, the main New Zealand station, located 3 km
south of McMurdo on Ross Island. Photo courtesy of National
Science Foundation, 1981.

The dry valleys of southern Victoria Land, occurring
between 160 ° and 164 ° E longitude and 76030 ' and 78030 ' S
latitude, are the largest and best known of the ice-free "oases"
located around the Antarctic continent. The dry valleys are free
of ice primarily because glacial flow from the polar plateau is
obstructed by the Trans-antarctic Mountains. The potential
evaporation greatly exceeds the annual snowfall, producing an
extremely arid (desert) environment. The dry valleys receive
about four months each of sunlight, twilight and darkness.
The mean annual temperature is about -20 ° C. During the
winter months, strong f6hn winds descend from the polar

plateau and buffet the valleys. Year-round temperature, light
and wind conditions for the dry valleys are illustrated in fig. 4.
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Fig. 4 Climate data recorded during 1986 from Taylor Valley,

Antarctica. Shown are daily averaged temperature and light levels.

Winds are the daily maximum of 6 hour averages. Data are abstracted
from the results of Clow et al (1988).

(NSF) and the National Aeronautics and Space Administration
(NASA), involves a number of scientists from the United
States and abroad. As a result of the systematic study of the
physical and biological processes occurring in the dry valleys,
a better understanding of conditions on Mars has been gained
and a scientific rationale for future exobiological and
geological investigations of that planet is being developed.

Sites on the polar plateau, such as the Soviet Vostok
station or the U.S. South Pole station, might be more
valuable for the simulation of spacecraft (versus planetary
base) science for long duration space flights. In contrast to the
dry valley regions, very little field research is conducted on the
plateau. Research efforts at these facilities are oriented toward
observational science (such as upper atmospheric physics and
solar astronomy) which can be conducted primarily from the
confines of a smacture placed on the plateau.

We suggest a planetary exploration simulation facility
could be located in the dry valleys of southern Victoria Land
near current planetary scientific research activities, such as
those in Taylor Valley (fig. 5) or Wright Valley (fig. 6). A
habitat in the dry valleys could support a small group of
scientists and engineers (4-6) during the austral summer (and
eventually over the winter months as well) and could duplicate
a long sojourn on the Martian (or lunar) surface.

Fig. 5 Remote field camp on the shores of Lake Hoare, Taylor
Valley, Antarctica. The camp accommodates four to six scientists
during the austral summer. The Canada Glacier is in the background.

Because of the extreme cold and arid conditions, the dry
valleys form what may be the best terrestrial analog of the
surface conditions existing on Mars [5,13,14,15]. In fact,
several scientists have recognized the dry valleys as an area
where life has adapted to extreme conditions with little
available liquid water and have conducted biological
investigations there in preparation for the Viking exploration
of Mars [16]. Research relevant to planetary science
(exobiology and geology) is ongoing in the dry valleys. This
research, jointly funded by the National Science Foundation
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Fig. 6 The New Zealand Station on the shore of Lake Vanda in

Wright Valley, Antarctica. The station is the base-camp for summer

field operations in the Valley. Vanda station has accommodated two

winter over parties.

4. WHY ANTARCTICA?

Antarctica has a number of important characteristics that
warrant serious consideration for its use as a site for a

planetary exploration simulation facility:
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It is an environment of real danger and
isolation, yet fatalities are uncommon during
research or training

During the forty-one years between 1946 and 1987, the U.
S. Antarctic program has experienced 29 incidents resulting in
52 deaths [17]. Despite the fact that the continent of
Antarctica is remote and quite hostile to those who go, with
proper logistical support and safety awareness, science can be
conducted with an acceptable level of risk.

There is a logistics infrastructure primarily
directed toward science support already in place
that could sustain operations in the dry valleys or
on the polar plateau

The United States Antarctic Program has developed a
remarkably efficient logistics infrastructure over the course of
the last three decades. Ships and aircraft bring major supply
items and personnel to the station at McMurdo and ski
equipped LC-130 aircraft and helicopters then transport
personnel and needed supplies to the interior of the continent.
This logistics infrastructure has had the benefit of being
developed around the needs of scientists, since research is the
primary activity of the U.S. program.

Ongoing scientific research opportunities in
Antarctica are relevant to planetary sciences

The dry valleys of southern Victoria Land are probably the
best terrestrial analog to the Martian environment. The
valleys, being cold, dry deserts, are natural laboratories for
studying life in extreme environments. Additionally, the
perennially ice covered dry valley lakes are currently being used
as models of ice covered lakes that may have existed on the
surface of Mars during a warmer, more clement epoch. The
very nature of this work makes it suitable as part of a Mars
research outpost simulation. The inhabitants of a dry valley
habitat would have relevant scientific research to conduct

during their long simulation sojourn.

There is a history of human factors research in
the Antarctic, recognizing it as an analog to space
flight and planetary exploration

Because of Antarctica's geographical isolation, the
continent has been used as a natural laboratory for studying
small populations over long periods of time. During the
winter months, these small groups of people are completely
shut off from the rest of the world except for radio
communications and perhaps a single airdrop resupply during
mid-winter. A number of investigators have compared these
experiences with those that may one day be encountered during
long duration space flight or on a remote planetary base.

m The Antarctic Treaty (Section 5.) provides a
proven and workable framework for international
cooperative exploration and scientific efforts

This remarkable treaty has provided the international
science community with a means to explore a continent
unfettered by political barriers familiar to the rest of the world.

For more than thirty years the Antarctic Treaty has maintained
peace on that continent and a spirit of cooperation found
nowhere else. With this powerful tool at hand, the southern
continent is the ideal location for a simulation of a
multinational space science project.

Many aspects of planning for planetary exploration can
and will be carried out by other modes of simulation. Studies
of some aspects of human factors may be performed more
effectively in a laboratory setting that provides for greater
control and monitoring capability but at the expense of fidelity
and realism. Underwater habitats continue to be successfully
used as analogs to long duration space flight [18] but they
cannot simulate crew conditions or field research activities
similar to those to be conducted on a planetary surface. In
contrast, a habitat in Antarctica would involve researchers
doing meaningful work relevant to their counterpart lunar or
Martian tasks, without strict supervision. Planetary
simulation facilities might be established in temperate desert
regions and could be useful in developing and evaluating newly
designed equipment. In addition, computer simulations may
be of some value in simulating planetary environments. There
are also other areas on Earth, mostly in the Arctic, that are
similar to Antarctica with respect to isolation and cold desert
environmental conditions. Nonetheless, Antarctica has
important and unique characteristics that make a compelling
case for its use as a site for a planetary exploration simulation
facility.

5. ANTARCTIC POLITICS

The exploration of Antarctica officially assumed an
international character in the late 1950's, when more than 60
research bases were established there by 12 nations as part of
the 1957-1958 International Geophysical Year. The
participation of the international community was codified in
the language of the Antarctic Treaty, signed in 1959 by the 12
nations. As of mid-1988, 38 nations had acceded to the Treaty
[19]. The Treaty specifies that Antarctica shall be used for
peaceful purposes only and that participating nations should
take an active role in conducting science on the continent.
Scientific results and observations are to be freely exchanged
and the treaty contains a provision for free access and
inspection of all bases by any nation that is an active
participant within the framework of the Treaty. The Treaty
has provided for international cooperation and is one of the few
long-standing international arenas in which United States and
Soviet positions coincide. It is important to note that this
spirit of cooperation between these two world superpowers has
survived the last 30 years in the face of previous cold war
tensions.

Because of its success, the Antarctic Treaty has been
suggested as a model for regulating future international activity
on the Moon and planets [20,21]. It is possible that future
manned Mars or lunar programs will be international endeavors
involving the United States, the Soviet Union, European
nations, Japan and other countries. The desirability of
international cooperation may have an overriding influence on
site selection for a simulation facility. The continent of
Antarctica is, by the very nature of the Antarctic Treaty,
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uniquely suited for the combined efforts of international
partners and would provide a logical location for such a
simulation facility.

6. PROGRAMMATIC CONSIDERATIONS

The implementation of a planetary exploration simulation
facility in an analog environment such as the Antarctic will
require cooperation between government agencies and the
private sector within the United States and between the United
States and other interested countries. We suggest an orderly
progression of events that will lead to the establishment of an
international planetary exploration simulation facility located
in the dry valleys of Antarctica. Eventually this facility could
be used by a number of nations in preparation for the
establishment of scientific outposts on the Moon or Mars.

The current United States program in Antarctica is
implemented by the Division of Polar Programs within the
NSF. U.S. policy is established by Presidential
memorandum. Within the United States, the first logical step
toward an Antarctic simulation facility would be the
establishment of a joint NSF-NASA working group to draft a
memorandum of agreement for conducting joint research in
Antarctica. This step would be followed by the identification
of interested private sector businesses and perhaps the
establishment of an international ad hoc study group to assess
the potential for an international planetary exploration
simulation facility in Antarctica. Initial contact between NSF
and NASA on this subject has already occurred. Within the
European Space Agency (ESA) there is an ongoing study
directed at defining the use of Antarctic bases as models of
space flight. The conclusion of a preliminary report
recognizes the value of Antarctic facilities to ESA long term
program planning and their broad potential scope [22]. The
other major spacefaring nations, the Soviet Union and Japan,
also have active Antarctic research programs and may be
already considering the use of Antarctica as a space analog.

If a planetary simulation facility is considered for
Antarctica, environmental concerns must be addressed. For
example, the dry valleys are unique and fragile ecosystems
which may not recover rapidly from environmental damage
[23]. Clearly, any plan for a planetary exploration simulation
facility must be predicated on a requirement of acceptable
levels of environmental impact. However, the placement and
operation of a planetary exploration simulation facility need
not be detrimental to the dry valley environment. In fact, if
properly planned, the advanced technologies associated with
such a test facility could reduce the impact of the existing
research activities through more complete recycling of wastes,
increased use of remote and automatic data acquisition systems
and reduction in the number of required support personnel.

Future planetary exploration missions are feasible if
spacefaring nations of the world begin now to develop the
capabilities to work cooperatively and with maximum
efficiency. The development and utilization of a planetary
simulation facility in the dry valleys of Antarctica would
provide program managers, scientists, and engineers with a
realistic simulation of humans living and working on the
planet Mars. The experience gained at an Antarctic planetary
testbed will help facilitate the peaceful expansion of humans in
the solar system and eventually lead to the establishment of
512

lunar bases and Martian outposts that will make the best use
of human talents.
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